
Intelligent Robotics in
30 Minutes

Joanna J. Bryson
Artificial models of natural Intelligence

University of Bath
http://www.cs.bath.ac.uk/ai/AmonI.html

http://www.cs.bath.ac.uk//ai/AmonI.html
http://www.cs.bath.ac.uk//ai/AmonI.html

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Why is it hard
to be smart?

Pretend you bought a robot, and it came with 100
things it knew how to do without being told.

For example, eat, sleep, turn right, turn left, step
forward, step backward, pick things up, drop
them...

Now pick a goal for your robot.

For example, flying to Tokyo.

Suppose you can’t be bothered to tell your
robot exactly how to get to Tokyo, so you
have it guess.

If getting to Tokyo takes one step, the robot
may have to try 100 different things.

If it takes two steps, the robot may have to
try each thing after each thing:

The hardness of
smartness (2)

1002 = 10, 000

Sanyo robot watchdog

The hardness of
smartness (3)

If the robot doesn’t know how many steps it
takes to go to Tokyo, it might get caught in
an infinite loop.

For example, it might eat, sleep, work, eat,
sleep, work, eat, sleep, work... and never buy
a passport.

When computer scientists say “hard” they
mean “pretty much intractable.”

Sony SDR-4Xs. Pictures from BBC

Intelligence & Design

• Combinatorics is the problem, search is the only
solution.

• The task of intelligence is to focus search.

• Called bias (learning) or constraint (planning).

• Most `intelligent’ behavior has no or little real-
time search (not cognitive).

• For artificial intelligence, most focus from design.

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Intelligence
• What matters is expressing the right

behaviour at the right time.

• Decompose the problem:

• Behaviour module: combination of code
and mechanism.

• Action selection: detect when to express
which behaviour.

• Both require good perception.

What works

• Modularity: simplifies design (Brooks 1986),
allows locally-optimal representations (Bryson
PhD 2001, Bryson IJCAI 2001).

• Action selection (sequencing): specifies goal
prioritisation and ordering (Bryson JETAI
2000, PhD).

• Iterative develop & test: cycle in increasing
complexity (object-oriented design; agile
development (Beck 2000, Bryson IJCAI, PhD).

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Behavior Oriented Design

• Modularity: simplifies design (Brooks 1986),
allows locally-optimal representations (Bryson
PhD 2001, Bryson IJCAI 2001).

• Action selection (sequencing): specifies goal
prioritisation and ordering (Bryson JETAI
2000, PhD).

• Iterative develop & test: cycle in increasing
complexity (object-oriented design; agile
development (Beck 2000, Bryson IJCAI, PhD).

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Behavior Modules

• Generate & control actions.

• Sense & interpret perception for actions.

• Store & maintain memory for perception.

Behavior Modules

• Objects (in an object-oriented language):

• Methods provide interface with other
modules, including action selection.

Example for BURST

• Recognize gate and compute trajectory to
centre.

• Do this at 10Hz, adjust velocity slowly,
bad frames won’t matter if there aren’t
too many.

• OR

• Remember previous 3 guesses, don’t
report new one if too different.

Issues of Modularity

Get Fuzzy (Conley 2006)

Issues of Modularity

• How do you get ordered behavior for the
complete agent?

• How do you decide what goes in which
module?

Issues of Modularity

• How do you get ordered behavior for the
complete agent?

• How do you decide what goes in which
module?

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Simple Action Selection

• Sets of productions

• A sense (recognize your context) and an
action.

What is an action?

• In robotics / real-time systems, actions
must be very brief, because the context
shifts very quickly.

• Drive through the hoop is a dangerous
atomic action, what if you turn a little?

• Increase thrust towards hoop center is
safer, it can be reevaluated frequently.

• Sometimes open loop is necessary.

Simple Action Selection

• Sets of productions

• A sense (recognize your context) and an
action.

• Sadly, robotics isn’t simple.

Context in Action
Selection

• Recognize gate and compute trajectory to
centre (production).

• What if you are already through gate and
were just looking for a floating target?

• Don’t want to be inappropriately
“captured” by action in the wrong context.

Contextual Action
Selection

• Sequence: when one production is
finished, move to next one.

• Hierarchy: allow several productions to
operate within one higher-level context.

• Priority: if more than one production could
fire, say which is most important.

Example for BURST

• Top of hierarchy is a sequence: through
gate, drop weight, surface under balloon.

• Prioritised productions for drop weight:

1. If stopped over target, drop weight.

2. If see floor target, halt on top.

3. [default], go towards beacon.

Issues of Modularity

• How do you get ordered behavior for the
complete agent?

• How do you decide what goes in which
module?

Issues of Modularity

• How do you get ordered behavior for the
complete agent?

• How do you decide what goes in which
module?

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Behavior Oriented
Design

1. Add a behavior module: how to act.

2. Add a bit of plan: when to act.

3. Test it works.

4. Go back to 1.

Behavior Oriented
Design

• If a module is getting too big and
complicated, take it a part, connect the
parts with plans.

• If a plan is getting too complicated, break it
up with hierarchy OR build a smarter
module to solve some of the problems

• Often perception is key!

Bryson’s first law of
intelligent robotics

No robot works the first time you run it.

Outline
• Introduction

• Why is it hard to be smart?

• What works?

• Behavior Oriented Design

• Modular Control

• Action Selection

• Iterative Development

Intelligent Robotics in
30 Minutes

Joanna J. Bryson
Artificial models of natural Intelligence

University of Bath
http://www.cs.bath.ac.uk/ai/AmonI.html

http://www.cs.bath.ac.uk//ai/AmonI.html
http://www.cs.bath.ac.uk//ai/AmonI.html

Building Intelligence

• AI normally associated with clever algorithms.

• No one algorithm produces working systems
from a vision (or even first-cut specs.)

• Behavior Oriented Design is a methodology.

• Optimize balance between human and
machine search for the right behavior.

Intelligent Systems
• Complete, complex agents:

• Multiple, potentially conflicting goals.

• Multiple, mutually exclusive means of
achieving a goal.

• Robots:

• Real-time, dynamic environments.

• Sense and change (act in) that environment.

(ATAL 1997)

(VR(J) 2000)

(SAB 2000)

0 1 2 3 4 5 6 7 8 9
2

4

6

8

10

12

14

 (Sparse)Std (Sparse)Var1 (Sparse)Var2 (Sparse)Var3

Fi
tn

es
s

life (D)

flee (C) (sniff predator t)

freeze (see predator t) (covered t) (hawk t) hold still

run away (see predator t) pick safe dir go fast

look observe predator

mate (C) (sniff mate t)

inseminate (courted mate here t) copulate

court (mate here t) strut

pursue pick dir mate go

triangulate (getting lost t) pick dir home go

home 1::5 (late t) (at home⊥) pick dir home go

check 1::5 look around

exploit (C) (day time t)

use resource (needed res avail t) exploit resource

leave pick dir go

sleep at home (at home t) (day time⊥) sleep

BOD Applications
N NE E SE S SW W NW

UT
Reproduce

1.4

T U

Move Actions
Mate

-0.08

Court

P. Mate Rand. Dir P. Den R. Den All Dirs

Clean Leave
this Sq

CleanSleep

Mate Court

Approach
Mate

Explore For Mates

Explore

Sleep

Approach
P. Den

Approach
R. Den

Sleep
in Den Clean

Keep

DirtinessLow HealthNight Proxfrom Den
Distance

-0.10

-0.05

-0.01

-0.05 -0.05
-0.15

Courted
Mate in Sq

Mate in Sq
Receptive

No Den
in Sq

Den
in Sq

No Den
in Sq

in Sq
Den

-0.02

-0.02
-0.25

-0.30
-0.04

= small negative activation

= positive activation

= small positive activation

= zero activation

= large positive activation
(1.0)

! ! !"

"

"

"
! ! !

Action
Selection

apparatus
test-board

reward

find-color, reward-found, new-test,

no-test, finish-test, save-result, rewarded
!!

monkey
visual-attention

hand

grasping, noises,
grasp-seen

""

sequence
seq

sig-dif
weight-shift

make-choice,

learn-from-reward
##

rule-learner
*attendants
*rule-seqs

current-focus
current-rule

target-chosen, focus-rule, pick-block,
priority-focus, rules-from-reward######################

$$#######################

look-at$$$$$$$$$$$$$$$$$$$$

%%$$$$$$$$$$$$$$$$$$$

(Animal Cog 2007)

(WRAC
2003)

(IVA 2005)

Intelligence

• What matters is expressing the right
behavior at the right time: action selection.

• Conventional AI planning searches for right
set of actions, requires sets of primitives.

• Learning searches for the right parameter
values, requires primitives and parameters.

• parameter: variable state.

• Evolution and development are learning.

