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Abstract. One of the defining traits of humanity is our capacity for accumu-
lating innovations. While many authors focus on the innovation process itself,
Evolutionary Anthropology has become more interested in the accumulation part
of this uniqueness, and in particularly whether something like an evolutionary
account of cultural acquisition can explain it. In this chapter I discuss the role
and sources of innovation in generating culture, and also the role of norms in
preserving it. I demonstrate through two sets of simulation experiments a model
of cultural evolution exploring the problem of cultural stability and change. The
first models the impact of noisy transmission and modularity on cultural stability.
The second looks at the impact on cultural change if a biologically-advantageous
variant emerges of a single cultural trait.

1 Introduction

Innovation is a topic of great interest in the study of cultural evolution [32]. How do new
behaviours and ideas come to be established in a culture? The reason for this interest
is obvious — culture is after all an amalgamation of past innovations, so the study
of innovation is also the study of the origins of culture. However, the emphasis on
novelty that the term ‘innovation’ elicits may not be the most useful perspective for truly
understanding culture origins. For evolution, the greatest challenge is preserving useful
traits. The most essential characteristic of life is its capacity to reproduce — diversity
and even increasing complexity, while also fascinating, occur in other materials as well.

How difficult is preserving culture? One indication of this may be the fact that so few
species do to any measurable extent [42]. While we know that many species use culture
as a part of their adaptive repertoire, there is little evidence for accumulation across
generations [48]. For some this has been seen as clear evidence that human culture is
not so much a result of unsupervised processes akin to Darwinian evolution, but rather
that it requires explicit and special mechanisms for transmission [17]. Of course, this
argument is either creationist or cyclical. While the current importance of culture to
human survival means that any innovation for preserving innovation is highly adaptive
biologically as well as culturally, it is unlikely that the initial innovation that supported
cultural accumulation was acquired culturally [12, 13].

Sperber and Hirschfeld [37, 38] argue that due to the noise inherent in the social
transmission of behaviour, only a modular model of learning and mind can explain cul-
tural preservation and stability. They propose that the massive modularity hypothesis



(MMH) [16, 36] is an alternative to the current emphasis by many evolutionary anthro-
pologists and behavioural ecologists on imitation as the source of culture [29]. Unlike
the modularity of Fodor [24], under the MMH modules are acquired during develop-
ment from culture. For example, the simple fact that a unique word exists is a clue for
the related existence of a useful concept, and a child will search for a robust application
of a novel term [44]. This can apply similarly to more complex cultural input such as
stereotypes [18] or myths [39].

In this chapter I demonstrate through simulation the robustness of imitation learning
given the context of a modular culture. This is simply because errors in transmission
tend to cancel each other out provided there are sufficient exemplars and there is no
bias in their production. I then go on to show however that a bias towards conformity is
absolutely essential for preserving innovation, and in fact demonstrate the difficulty of
constructing a model that can discover optimal new behaviours. At least for the simple
abstract simulations presented here, it is difficult to find a single set of parameter values
that both allow for innovation and preserve good solutions once found. I suggest that
this may explain why cultural species do not tend to have a single such set of parameters,
but rather to be neophilic and neophobic at different ages or in different contexts.

1.1 Terms and Concepts: Cultural Evolution and Innovation

Whether culture can be usefully thought of as an evolutionary system is a matter of
ongoing debate [1, 35, 51]. While few doubt that the biological capacity for culture
must have evolved, the question is whether or not culture itself evolves. That is, are
the contents of cultures themselves (e.g. words, ideas, symbols, images or even just
socially-aquired behaviour) subject to reproduction, variation and selection in a way
that is meaningfully similar to the process Darwin identified as explaining the origin of
species. While acknowledging this controversy, in the present chapter I will not address
it directly, but rather just assume an evolutionary perspective towards culture. This is a
standard approach for simulation: to the extent that any results are validated by compar-
ison to their target system in the natural world, these results can be seen as also verify
the initial axiomatic assumptions behind the simulation as well [14].

Taking then a selectionist perspective, we might usefully view innovation as errors
in the cultural replication and preservation process that happen to persist. Of course
this perspective is a simplification. There may well be intelligent search performed by
some individual ‘carrier’ of the culture that is the root cause of some specific ‘defect
in replication’. Cultural evolution is not necessarily an unsupervised and unintentional
search process. Further, there is no reason for inheritance in cultural evolution to be
limited to one or two parents and a single recombination event [11, p. 89-90]. Rather,
the more information that can be gathered, the easier it is to detect the salient signal
inside the noise and irrelevant detail. Finally, any particular variation in culture may
actually convey a biologically-adaptive benefit, so it may not just ‘happen’ to persist.
However, taking a simplified meme’s-eye view of innovation may help us understand
the processes that underly cultural change [20].

I take it as given that some cultural variation happens as a result of blind chance and
copying errors. For the sake of simplicity therefore, this will be the only sort of ‘inven-
tion’ in the models described here. Presumably intelligent invention only accelerates the



pace of change by making actually adaptive ‘errors’ more frequent, but otherwise does
not substantially alter the process. In an effort to keep this chapter as clear as possible,
I will call any deviation from a previously-established culture an invention, and any
invention that reliably persists through cultural transmission an innovation. The mod-
els below show conditions where an adaptive innovation can be made, and conditions
where innovations occur even though they have no adaptive impact.

2 Background: Modularity and Cultural Stability

It is useful to decompose the social communication of behaviour into two different lev-
els. For the purpose of this chapter, I will refer to the rote replication of end effector
positions or end effects as imitation. This is a simplistic, ordinary-language use of the
term, but sufficient for the experiments described here!. By ‘imitation’ I do not neces-
sarily mean a full transfer of behaviour. This latter would imply that two agents have
communicated not only actions but a model between them, such that they have the same
understanding of the role of the actions they imitate, and the goals they might meet with
those actions. Sperber and Hirschfeld argue that this shallow sort of imitation cannot
be an integral part of cultural transmission. Although I generally find their work very
useful, my main departure is that I believe shallow imitation can fulfill this role.

Sperber and Hirschfeld [37, 38] argue that due to the unreliability of both perform-
ing actions and perceiving others’ acts, reliable cultural transmission is exceedingly
unlikely. Giving evidence based on the known degradation of signal experienced in sim-
ple transmission chains of spoken sentences (e.g. the party game of Telegraph [USA]
or Chinese Whispers [UK]), they criticise the current emphasis on the role of imitation
in cultural transmission. Imitation is limited to mere replication of apparent behaviour,
and that is in turn limited by constraints in our ability to perceive others’ actions, and
also by our own inability to execute our actions exactly was we intend. Sperber and
Hirschfeld insist that what matters is the deep transfer of mental models from one mind
to another, not the shallow imitation of expressed behaviour.

How can this deep model be recovered from limited perceptual information? Sper-
ber and Hirschfeld see no way, and use this implausibility as evidence that some in-
formation must come from elsewhere. They suggest this missing information is the
information encapsulated in modules. Modules under the MMH may have both genetic
and explicitly-learned components. Thus extra information is available to compliment
the shallow information available from perception and imitation.

People used to implementing artificial learning systems and / or familiar with the
mathematics or logic of learning may find the above arguments somewhat unsatisfying.
After all, provided that errors in perception or action are random, they can be considered
noise and will cancel each other out provided there are enough observations. Anything
left is not random is also not noise, but rather some sort of signal which ought to be use-
ful. However, this only accounts for part of the Sperber and Hirschfeld argument, and
the other part (that some information is missing) I think is correct, though their theory
is under specified. Where does the extra information they postulated as coming from

! For more elaborate definitions see e.g. Bryson [12], Whiten and Ham [47].



modules itself originally come from? Biological evolution, cultural evolution and indi-
vidual learning are all forms of learning. Therefore taken as sources of information and
knowledge, their power is essentially identical [4, 53]. Thus to some extent the Sperber
and Hirschfeld argument is overly compartmentalised. To say that the extra information
required to make sense of the noisy social transmissions comes from modules is still to
beg a question of how the modules themselves have come to support this process.

Although they are not completely explicit about it — in fact, they are almost ex-
plicitly agnostic on the topic [38, p. 41] — it seems likely Sperber and Hirschfeld are
implying that some of what we commonly call ‘human culture’ is genetically encoded.
This is problematic if we take the simple information-centred definition of culture I or-
dinarily favour: that culture is all behaviour acquired from conspecifics by non-genetic
means [12, 35]. However, taking instead a more ordinary-language view of culture as
the aspects of behaviour such as language and social organisation which seem to vary
between peoples, then the idea of a genetic component becomes more sensible. There
is relatively little controversy for example that some aspects of linguistic competence
must be genetic (such as the capacity for vocal imitation and transmission), though oth-
ers are clearly learned by individuals from their own or another culture [23]. Given what
we understand about how learning affects evolution [2, 6, 27], we should also expect
that some things that may first evolve as cultural variation could over time become at
least partially genetically entrenched .

2.1 Modularity and Learning

What Sperber and Hirschfeld really propose then is that the automatic or implicit learn-
ing of culture from imitation cannot in itself account for all the richness of human cul-
ture. Although they acknowledge a possible complementary role for imitation-driven
cultural transmission, their own emphasis is on complex mental models underpinning
human behaviour. This process in turn requires the explicit transfer of abstract / sym-
bolic knowledge. Symbols in themselves contain almost no information, but cultural
participants who understand them have high-information-content associations, or ground-
ing, for them. Under the Sperber and Hirschfeld model, grounding is encoded in mod-
ules and contains most of the information necessary for the newly acquired behaviour.
This notion of the role of modules is quite similar to one I have proposed in the
context of artificial intelligence [9, 10]. In this work I extended the model of modular
organisation of intelligence known as Behavior Based Artificial Intelligence (BBAI)
[8] to include module-based learning. The original insight of BBAI was that real-time
intelligence is best decomposed into behaviour modules. ‘Best’ in this context means

— responsive to the demands of an unpredictable and rapidly changing environment,
— robust to the difficulties of both sensing and control, and
— easily and reliably developed by programmers and roboticists.

Under standard BBAI, the purpose of a behaviour module is to perform some action
or provide some capacity for its host agent. Modules consist therefore of instructions
for whatever control is necessary for those actions, but also of whatever perception is
necessary to guide those actions. This tight coupling of sensing to action is a hallmark



of BBAL It simplifies the problem of building intelligence by restricting the problems
worked on to a minimum set of capacities each with only the most essential detail re-
quired to reliably execute its tasks. The strength of the approach was not only argued but
also demonstrated in the first robots able to move autonomously at animal-like speeds
[7,28].

The Bryson [10] extension to BBAI stems from the observation that perception is
more than just sensing. At any one instant, sensing provides too little information to suc-
cessfully disambiguate the correct next action. Animals address this problem through
systems of memory ranging from integrating recent signals through conventional ideas
of memory (e.g. map learning) and on through genetically provided biases [15, 34]. This
applies to BBAI as well. Just as behaviour modules should contain the dedicated and
specialised sensing necessary for their actions, they should also contain the dedicated
and specialised memory necessary for both perception and control. One advantage of
this modularisation of learning is that specialised representations can be chosen that
facilitate the particular sort of learning that each module needs. This increases the prob-
ability that the individual agent will learn and act successfully [52].

2.2 Bootstrapping Culture: The Law of Large Numbers

From the above review it should be obvious that I strongly support the idea that modules
can and almost must support all learning. Strictly speaking, modular learning system
cans generally be recast as a computationally-equivalent homogenous ones. That is in
theory a homogeneous system can learn anything a modular one can [52]. However,
accurate learning is much, much less probable without bias which modularity can pro-
vide, and therefore will take much longer on average to converge [5]. For an animal or
other real-time system, this means it is less likely to succeed in time to be used.

This result includes the individual learning that underlies cultural transmission and
evolution. However, we must consider the full process of internalising information to
guide behaviour, from evolution through development and learning. We also need to
account for cultural transmission in the non-human species in which it has been ob-
served [22, 30, 33, 43, 46, 50]. Even ants might be thought of as having minor cultural
differences between colonies, since their members both determine and learn new nest
locations in a distributed, social manner [25].

Sperber and Hirschfeld are correct to be skeptical of one-shot imitation as a mech-
anism of social transmission. Essentially, if a single signal can transmit enough knowl-
edge to really alter behaviour, then that knowledge must have been previously accumu-
lated and stored in such a way that the behaviour observed has information-equivalence
to a symbol anyway [54]. In this case, imitation is not fundamentally different from ex-
plicit communication. There will in fact be a continuum of conditions whereby true
communication of cultural contents can be achieved with more or less information
prompted, depending on how much the cultural and genetic predispositions of the
demonstrator and the receiver align. To return to the telegraph metaphor, the way real
telegraphs work is through a system of repeaters that can remove noise accumulated and
re-boost the signal. Where the repeating process is intelligent, degradation is probably
even less of a problem.
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Fig. 1. Culture degrading. Notice the presence of subcultures among neighbouring adults.

3 Experiment 1: Stability of Culture with Noisy Transmission

The following experiments demonstrate the above arguments, and then move to explore
some of their consequences. They are abstract and I have not been able to think of a
good way to validate them, so at this stage of development they should probably be
thought of as no more than intuition pumps [21]. Here I present a modular model of a
culture. The model is agent-based (ABM). It is built in NetLogo, a standard and freely-
available ABM development environment [49]. The code for the model is available
from the author by request, or her Web site by demand.

3.1 Model

An ABM consists of three parts [14]:

1. an environment where the agents are situated and which determines their possible
behaviour;

2. attributes, also known as parameters or variable state, which describe the agents
and what makes them individual; and

3. behaviour or intelligence, the actual algorithms which the agents use for control.

I describe each of these in turn.
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Fig. 2. Culture recovering. The probability of generating incorrect actions has been reduced just
4%.

Environment The first model has a very simple environment. It is entirely social, with
no intrinsic reward provided for any behaviour. Space is described as a torus — that is,
a square with the left and right edges connected, and also the top and bottom ones. This
means that the code and analysis do not have to deal with exceptional agents that live

at the edge of their world. Agents occupy every possible location in the grid; each has
eight neighbours it can observe.

Agent Attributes Agents have three types of attributes [14]:

1. static parameters which vary only between experimental conditions,
run-dependent parameters which vary per run and often per individual but are fixed
at the beginning of the run, and

3. dynamic parameters which change within a single agent’s lifetime.

Besides having eight neighbours, the most fundamental static parameter in this
model is the agents’ modules. All agents have the same number of modules. Although
the exact number of modules is run-dependent, how they operate is static. Each module
is very simple — it essentially corresponds to a context the agent may find itself in. Each
agent has a single behaviour that it currently expresses in that context; which behaviour
among many possible is learned socially (see algorithm below). For convenience in vi-
sualisation (but not in explication) there are exactly as many possible behaviours for



each context / module as there are modules. It would probably be sensible in future ver-
sions to allow two different N for modules and possible behaviours for greater clarity
in communicating the results.

Since the agents acquire their behaviour socially, they need to be able to keep track
of other agents’ behaviour they witness. Thus each agent has associated with each mod-
ule a memory. The size of this memory is the same as the number of possible actions.
The agent remembers how many times it has seen each action it has witnessed in each
context. Thus the content of this memory is a dynamic parameter.

Besides the contents of its memory, the only other dynamic parameter of an agent
is its age. At the very beginning of a simulation, age is assigned randomly to each agent
from the full range of possible values. Subsequently, any new agent starts with age 0.

In addition to the number of modules, there are a number of other run-dependent
parameters:

Each agent’s (X, Y) position in social space. This determines which other eight
agents are its neighbours.

The number of ‘years’ spent as a child and as an adult. The difference is that no one
learns socially from children.

The number of acts performed per ‘year’. This in combination with the lifespan and
the size of the culture determines how much each agent will experience in its ‘life’.
The probability of a perception error and the probability of an action error. If one
agent performs an action error, all of its neighbours will see an unintended be-
haviour in a particular context. If one agent experiences a perception error, then it
is the only agent that’s knowledge is affected. In both cases, an error means a value
for an action is randomly drawn from all possible acts. For the sake of simplicity,
in the experiments discussed here the only probability varied was of action error.
This is more likely than perception error to cause perturbations of culture, since it
can bias eight neighbouring agents” beliefs in the same way.

This variable is somewhat dynamic, in that it can be varied during the course of a
simulation by the experimenter. This allows for a relatively easy search for a thresh-
old value below which the culture is stable an above which the culture degrades.
However, nothing the agents do themselves changes this value, so from their per-
spective it is run-dependent.

— The weight given to the seed culture at the beginning of the simulation. At the be-
ginning of the simulation, all of the first generation of agents have their memories
set to some initial cultural value for each context. This value is set by the experi-
menter. If the weight is five, the agents have a memory equivalent to having seen
other agents perform that action five times. This parameter has no other role in the
simulation after the first generation has died.

For visualisation, the field of agents is visible as a square. The agents are arrow
shaped. The agents are coloured to indicate their age: children are light and adults dark.
The viewer can be set to examine any one behaviour context for all the agents. The
beliefs and therefore the chosen action of each agent for that context is then visualised
as the angle at which the agent points. The angle = (360+7)/N, where 7 is the number
of this particular context, and [V is the number of contexts and therefore also the number
of possible beliefs. As a secondary visualisation, there is also a chart which shows the



percentage of agents that conform to their original beliefs in the seed culture for the
first four contexts. Since all contexts are functionally identical, these first four can be
treated as a small random sample of modules.

Agent Behaviour On every program cycle, a context is chosen by the environment
at random. Each agent then checks its memory for that context and expresses whatever
action it has itself most often witnessed in that context. If more than one action is tied for
having been witnessed the maximum number of times, then the tied actions are chosen
between at random. Assuming there is some Probability of Action Error (PAFE), the
agent then has a PAFE chance of choosing an action randomly from all possible values
and expressing it. Otherwise, it expresses its module’s true value.

“Expressing an action” in the simulation is manifest as an agent asking all eight of
its neighbours to add one count to that action’s value in that context, indicating that
action / context pairing has been witnessed once more. If there were a probability of
perception error, at this point a random value might be introduced into an individual’s
memory rather than the act expressed. However it is best practice to limit the number of
parameters on a model for simplifying analysis, and for the reason stated above I chose
only to manipulate action errors for the experiments presented here.

When an agent reaches its age limit, it dies. When an agent dies, it is immediately
replaced with a new agent of 0 age. This new agent has a completely empty mind. It
has the same number of modules as the rest of the agents in the simulation, but every
possible value for every module is given 0 weight. Thus its initial actions will be entirely
random.

3.2 Results

Cultural stability is directly correlated to the number of exposures to an action that an
agent is likely to experience for each action in its lifetime. Thus the longer adult life,
and the more actions that occur per year, the more stable culture. On the other hand,
having more modules decreases the number of actions per module, so this is negatively
correlated to stability, as of course is the PAF.

One surprising result concerns the influence of children on culture. The tendency to
ignore children’s behaviour (which is initially essentially arbitrary) has been proposed
as a mechanism of cultural stability.However, because even children after one year are
more likely to express their culture’s values for any module than any other value, short-
ening “childhood” — or at least, the period where children do not serve as cultural
models — actually increases cultural stability. Of course this is not the only attribute
of childhood. If I had modelled it also as a period when more is time devoted to ob-
servation of others (perhaps by increasing the neighbourhood size for children), then a
longer childhood might have been more beneficial.

Figure 1 shows a run with parameters set such that the culture is fairly stable, but
not sufficiently so to stop degradation (forgetting) of the culture. Since we are observing
the ¢ = 0 context module, the agents conforming to the original culture are pointing
straight up. Notice that young agents (the light / yellow agents) may be oriented in any
direction since they will not have seen many expressions of behaviour in this context



yet. However, where adults (dark / blue agents) are misoriented, they often are so in
company. Thus the same mechanisms that largely preserve culture can also serve to
form and preserve subcultures.

Figure 2 shows the same simulation in the future. However, just after the previous
snapshot, the probability of action error was lowered from 94% to 90%. Notice this
does not simply freeze the decline of the culture, but actually results in the initiation of
arapid recovery. This is because the level of conformity to the original culture was still
> 1/N.If culture had degraded to total chaos, then reducing the P AFE would have lead
to conformity as well, but not necessarily to the original value. Note also that a culture
will never have 100% conformity because of the ignorance of children, but with a low
PAF astable culture will achieve a high level of conformance.

3.3 Discussion

The idea that a module might take only a few discrete values may seem such an extreme
abstraction that it renders the model meaningless. However, we know that animals in-
cluding humans are extremely inclined to categorise perceptual data. Even in continu-
ous domains such as the light spectrum, humans are far more sensitive to variation near
the “boundaries” between named colours than well within them [26, 40]. This empha-
sises the role both Sperber and Hirschfeld and I hypothesise for modules in learning
in general, of which social learning is a special case. Through some combination of
genetics and experience the agent is assumed to know a set of categories or concepts,
which learning facilitates a choice between.

Social learning may also facilitate the discovery of new categories and modules
by signalling through variations in behaviour a perceptual difference an agent had not
otherwise detected [3, 11]. However, module construction is not modelled in the current
simulations.

4 Experiment 2: Innovation

In the first model we already witnessed the formation of subcultures. Since these can be
stable for a few years or even generations, they might already be viewed as innovations.
In the second set of experiments we observe what happens when one possible value for
a culture model is more adaptive than the one currently dominant in the culture. To do
this, we have to introduce reproductive variation into the model.

In the previous simulation, reproduction was always at exactly replacement rate.
To keep the experiment simple, a mechanism of selective reproduction was chosen that
kept a full environment as the maximum number of agents. Thus, for the non-adaptive
culture values, reproduction was lowered below replacement rate.

4.1 Model

The model is largely as described before, with only one exception: reproduction.
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Fig. 3. The point in time when an adaptive innovation is just beginning to dominate a culture.

Environment The environment is largely unchanged, except that there is now one

context which can be differentially rewarded. Which context this is can be set by the
experimenter.

Agent Attributes There is one new attribute, a run-dependent parameter reflecting
Selective Advantage, S A, described below.

Agent Behaviour One module or context is chosen by the experimenter to be selec-
tively rewarded. For that module, only one action is right, or put another way, only one
belief is ‘true’. When an agent dies, if it does not hold the correct value, then its proba-
bility of being replaced is reduced by S A. On the other hand, if an agent does have the
adaptive belief, not only will it certainly reproduce, but also if one of its neighbouring
spaces is available, it will create one additional offspring. This allows the recovery of
the population.

Note that because all agents are identical, there is no change in genetic distributions
due to this advantage. What a parent leaves to its child or children is only its neighbours

— its social network.
4.2 Results and Discussion

Surprisingly (and ironically), my explorations of the parameter space have shown that
a culture needs to be strongly disposed towards stability in order for a new tradition
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Fig. 4. The impact of adaptive selection for a new value in one module on the cultural values of
another. The module governing the behaviour shown has no ‘true’ (adaptive) belief; sub cultures
for this behaviour have emerged as a result of the social dynamics resulting from selection on
another behaviour.

to take root. If culture degrades easily, then even when agents stumble on the adaptive
subculture they forget it again within a few generations. Obviously, however, it takes
considerable disruption for a stable culture to lose its existing values so it can change
to the adaptive ones. As the model is currently built, this disruption takes the form of
the loss of neighbours and therefore the lower probability of discriminating the cultural
values accurately. When one isolated subculture does stumble on the adaptive value and
begin refilling the space around it, then the propensity for stability returns.

If the culture parameters are set to a lower level of stability, then the dominant cul-
ture can stop dominating earlier, but any new subculture has significantly more difficulty
becoming self-maintaining. The adaptive subculture in particular becomes surrounded
by juveniles (that is, relatively young agents) filling empty spaces. Due to less prior ex-
perience, relatively young agents are more open to influence — both to random patterns
of other juveniles and to the influence of members of other neighbouring subcultures.
Because it will still be disproportionately wide-spread in the culture, the ring of ju-
veniles is particularly vulnerable to invasion by the original, non-adaptive value held
by that culture. Since they surround the core of ‘true’ (adaptive) believers, they will
generally sway their behaviour and the true belief is lost.

Another significant factor determining the outcomes for this simulation is the prob-
ability of stumbling on the correct answer in the first place. Recall that in all these



simulations all behaviours are equally probable for naive agents. If there are too many
possible values for the module that is subject to selection, the agents are unlikely to
find the rewarded value in time to save themselves from extinction. If the simulation
were changed so that the agents were even slightly more intelligent in their search —
for example, if they could remember neighbours that failed to reproduce or succeeded
in having two children, this would increase the probability of the correct action being
chosen.

Another interesting result is that although only one module was subject to selective
pressure, the cultural norms for other modules also change. This might be because the
same agents that are likely to discover the adaptive innovation had a general tendency
for invention. Although all the agents have identical programs and are seeded randomly
at the beginning of the simulation, the population is not entirely homogeneous. Chance
patterns of distribution of age — the only differentiation between agents in the initial
population — can lead to some patches of space being more or less likely to deviate
from the cultural norm and form a subculture. Due to the policy of reproduction by
replacement, age patterns are fairly stable. Another explanation is that change simply
occurs due to the drop in cultural stability with the reduction of numbers. However,
since the other modules are not having their original culture actively selected against,
in some cases they recover their original value after the population stabilises (see chart
in lower right of Figure 4).

Another unanticipated result from this experiment was that the pattern of regrowth
after the adaptive behaviour was discovered lead to large regions of adjacent age co-
horts. This in turn seems to lead to the emergence in many but not all of the module
contexts not subject to selection of multiple stable cultures. Figure 4 shows an example
of one such. This may have analogues in natural culture, where age cohorts may com-
municate predominantly internally rather than mixing with other ages. Even where there
is a mix of ages, it is possible for age cohorts to focus their social learning attention on
their peers.

The figures show a run where the PAE was set to what was in the non-selective
condition a fairly stable value, particularly given the number of modules in the culture.
Figure 3 shows the cultural values for the context and module subject to selective pres-
sure when the number of agents holding the adaptive belief has just begun to outnumber
number conforming to the original culture. Figure 4 shows the same run after the pop-
ulation has recovered. This second figure observes not the context subject to selection,
but one of the other contexts where the values are arbitrary from a selective perspective.
This context has now formed multiple sizeable, stable subcultures. Notice the pattern
of ages in the agents as indicated by their colour.

5 Conclusions and Discussion

In this chapter I have examined and to a large extent supported the proposal of Sperber
and Hirschfeld [37], while at the same time clarifying some details of how their system
might work. The modules they describe utilise information previously acquired either
by the species (encoded genetically) or by the individual’s learning, which of course
may also be channelled by the species through culture.



The model I have presented demonstrates the ability of a culture to be stable in
the face of enormous errors in communication. The famous ‘poverty of the stimulus’
is simulated by the high level of noise in the actions actually generated by the agents.
Agents are nevertheless able to derive a signal because of the Law of Large Numbers
and the fact the errors are unbiased. In these simulations all behaviour contexts are
equally probable and all social demonstrations equally salient. In human culture we
know that rare but important cultural behaviours such as rituals tend to be associated
with high emotion salience indicators such as music which may assist in emphasising
particular memories [31, 45]. For example, in medieval England the relatively boring
and seldom-performed but essential task of patrolling the parish boundaries was made
salient to young boys by beating them at boundary stones so the boys would remember
the stones’ locations [19].

The models also show circumstances in which innovations can not only take place
but take hold. Strong tendencies towards conformity can give rise to small stable subcul-
tures even in strictly arbitrary environments, as shown in Experiment 1. Experiment 2
explores the conditions necessary for acquisition of a newly-adaptive norm — that is,
an action selected by the environment. In addition, it also shows that society-wide dis-
placements of one cultural norm for another can take place for no direct adaptive reason,
but simply as a side-effect of the disruption to the society necessary for another, more
urgent change in cultural norms. This incidental disruption could be dangerous if a
norm that is adaptively-neutral in the current, local environmental context actually held
adaptive salience in some larger-scale environmental context, for example in times of a
natural disruption such as flooding. On the other hand, if the society is too conservative
— that is, makes too few ‘errors’ in behaviour replication, then inventions seldom occur
and innovations are never adopted.

One difference between my work and that of Sperber and Hirschfeld —- I do not
believe they are correct to assume that identical internal models necessarily underlie
apparently identical connections between contexts and expressed actions. The confor-
mance demonstrated here is based on shallow imitation. To some extent, it is quite likely
that agents with similar brains and similar experiences will wind up forming similar in-
ternal models or theories in order to generate similar behaviour. However, it is possible
that multiple models would result in the same or at least categorically indiscriminable
behaviour. For example, one might obey law due to concerns about an afterlife, due to
an elaborate model of the importance of the rule of law and the power of social conta-
gion, or simply because one is evolved to unthinkingly behave like others around you,
and most of them are lawful. These three models would be indiscriminable from the per-
spective only of your observing the law. Steels and Kaplan [41] demonstrates a robot
model for this phenomenon. The underlying lexicon models for robots that have “per-
fectly” learned a shared language can be clearly seen to differ. In all circumstances the
robots use the same terms to reference the same objects, yet the internal representation
they require for grounding the terms as mappings to their sensor and motor states vary
considerably between robots. Thus model conformance is not a necessary part of social
conformance, and may in fact provide a useful source of variation to the populations’
inventions.



The simulations I have described beg much further analysis. For example there
should be a more thorough exploration of the effects of developmental differences in
communication on the adaptation of cultures to new circumstances or to the opportuni-
ties of adaptive innovations. Further, the spontaneous emergence of stable subcultures
in both sets of experiments might be seen as examples of sympatric speciation — a pro-
cess normally attributed to sexual selection. Clearly no equivalent of sexual selection
takes place here. Although the model is intended to be one of cultural evolution, it might
easily be extended to model biological evolution to study this process. Or, one might
hypothesise that cultural evolution underlies the beginning of sympatric speciation, and
the process is then genetically consolidated. These projects are left as future work.
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