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Synonyms

Individual-Based Modelling. Individual-Orientated Modelling. Multi-Agent
Systems (has other meanings, occasionally used as synonym.)

Definition

Agent-based models are a type of model based on computer simulation, where
the behaviour of a system is determined by the activities of autonomous indi-
viduals and their interaction with and through an environment.

1 Introduction

Agent-Based Modelling (ABM) is a research method for understanding the col-
lective effects of individual action selection. More generally, ABM allows the
examination of macro-level effects from micro-level behaviour. Science requires
understanding how an observed characteristic of a system (e.g. a solid) can be
accounted for by its components (e.g. molecules). In ABM we build models of
both the components and the environment in which they exist, and then observe
whether the over-all system-level behaviour of the model matches that of the
target (or subject) system. Constructing agent-based models (ABMs) can be
seen as a form of theory building. The consequence of expressing a theory as a
simulation is that many aspects of the coherence and explanatory power of the
theory can be checked by examining the simulation outputs.

Typical elements of an agent-based model are the attributes and behaviours
of agents, the relationships between agents and their interactions, the envi-
ronment, and how the agents interact with with and through the environment
(Macal and North, 2010).

ABM is still a sufficiently new research methodology that there is still some
controversy in its use, and still some unevenness in its application and de-
scription in scientific papers. ABMs can be very sensitive to initial conditions,
and can produce complex behaviour which can be difficult and computationally
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intensive to analyse and understand. Without sufficiently-established method-
ological practice, it can sometimes be difficult to incorporate ABM results into
true scientific discourse. However, the practice is becoming more widespread
and ABMs are frequently included as one form of evidence in many high-profile
scientific articles.

In this article we review ABM and the techniques for its analysis. In Section
2 we discuss the history of ABM and give some examples of where it has been
used. In Section 3 we discuss the considerations to be taken into account when
designing and running ABMs, and popular platforms for constructing them. In
Section 4 we discuss the analysis of ABMs and how this can be used in theory
building. Finally in Section 5 a simple and well-known ABM is described —
that of the flocking behaviour of birds by Reynolds (1987).

2 History

Agent-based models emerged from work on cellular automata (CA), the first
of which was created by John von Neumann and Stanislaw Ulam in the 1940s.
Their idea was to try to build a machine that could autonomously reproduce
itself and the solution was a complicated set of rules on a grid. In 1970 John
Conway simplified this idea in his Game of Life (1970). This game involves a grid
of cells in which every cell interacts with its eight neighbouring cells according
to four basic rules which decide whether the cell will live or die. These basic
rules create many different emergent and complex patterns including one which
copies itself in the process of destroying itself.

In the 1970s one of the first ABMs was developed. This model was developed
by Schelling and was used to study segregation (Schelling, 1971). This model
was implemented by physically placing dimes and pennies on a piece of graph
paper, where a coin moves location if it has a majority of immediate neighbours
of the other coin type. After a number of these moves the emergence of segre-
gation of pennies and dimes can be seen. Thus, in this model agents (the coins)
make decisions and interact with one another in an environment (the grid) —
contrasting with CA models where it is only the environment that is considered.

After Schelling’s physical implementation of an agent-based model ABMs
began to be programmed using computers. This meant they could be more
complicated and run for many more iterations. Thus, ABM became a more
useful tool and work using them truly began. Robert Axelrod was a key player
in the first work using computer based agent-based models. Axelrod’s early
work focused on using ABM to study the best solutions to the iterated prisoner’s
dilemma — a game theoretical model of cooperative behaviours (Axelrod, 1984)
Axelrod remains one of the area’s main advocates.

Other early applications of ABM were in biology. Hamilton (1971) and
Hogeweg and Hesper (1979) used early modelling techniques to establish basic
principles of animal sociality. In the 1980s ABMs also started to be used to study
specific animal behaviours, such as the social interaction structure and ontogeny
of bumble bees (Hogeweg and Hesper, 1983), and the flocking behaviour of birds
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Reynolds (1987). After these initial developments and progressively powerful
computational power, ABMs have become an increasingly popular tool in animal
behaviour, ecology, the social sciences, the life sciences and economics.

A notably large early agent-based model was the simulation of whole artificial
societies in the Sugarscape model by Epstein and Axtell (Epstein and Axtell,
1996). This model looks at a simple grid environment where sugar is distributed
unevenly, agents move from cell to cell and use the sugar as a resource (whether
it be for food or a trading material). By adding more rules, the model can be
interpreted to show complex social behaviour including disease transmission,
inheritance, trade networks, economic inequality and combat.

Research using ABMs has also included how culture changes and spreads
(Axelrod, 1997a), the evolution of cooperation (Axelrod, 1997b), the societal
collapse of the Anasazi people (Dean et al., 2000), social behaviour in primates
(Hemelrijk, 2000), the study of agricultural economics (Berger, 2001), the spread
of cancer (Preziosi, 2003), land use (Brown et al., 2005), predator-prey rela-
tionships between killer whales and other marine mammals (Mock and Testa,
2007), sharing information (Čače and Bryson, 2007), crowd behaviour during
emergency evacuation (Pan et al., 2007), and the adaptive immune system (Fol-
cik et al., 2007). They have become an established method used broadly in
high-impact publications in the social and biological sciences, including studies
of political party policy dynamics in Ireland (Laver, 2005), schisms in religion
(Whitehouse et al., 2012), the impact of naive individuals on consensus forma-
tion (Couzin et al., 2011), the appearance of modern human behaviour (Powell
et al., 2009), and the origins of war (Choi and Bowles, 2007).

Agent-based models can therefore now be accepted as widely used. They are
able to demonstrate interesting, unexpected and complex behaviours even from
very basic rules, sometimes of extreme scientific importance. However, without
properly analysing and validating the results found from an agent-based model
the work can be as ungrounded as a computer game, rather than demonstrating
real scientific progress. We address this issue in Section 4.

3 Designing and Running ABMs

Designing a model involves knowledge and assumptions about the system being
modelled. Models are abstractions of reality, and therefore they do not have to
contain every single factor to do with the system. Because of this, decisions on
which important components to include in the model, and those which do not
need to be included, need to be made. These decisions can be based on which
dynamics are of particular interest, the aspects of the system for which data is
available, and more subjective or literature-based decisions about which factors
are believed to be theoretically important.

There are several platforms for implementing agent-based models; including
NetLogo (Wilensky, 1999), Repast (North et al., 2013), MASON and Swarm.
A comparison of these is given by Railsback et al. (2006). However, the use of
a platform is not mandatory and an agent-based model can be coded relatively
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Figure 1: A flow diagram of key steps in the modelling process. It is important
to note that the observed data which is used to inform on the model’s design
should not also be used in the model-validation step.

easily in an ordinary programming language, particularly languages that are
object oriented. However, many platforms provide tools for visualisation and
analysis that model authors find useful.

Often there will be stochastic elements to ABMs. Due to this every time a
model is run the results will be somewhat different, just as in many experiments
with the physical world or living animals. In these cases, models should be run
multiple times in order to know that the results found are representative. By
running the ABM many times the user can get an idea for how variable the
results are, and what kind of general model results occur. If the results of
different runs of the model vary more largely than is predicted by theory, it
could be a sign that the model has not been implemented properly and there
may be a bug in the code, or equally that the theory is incorrect. Determining
which is the problem is also a matter of analysis.

After designing, building and running the model it should then be verified
and validated. These will be discussed in the next section. Key steps in the
modelling process are shown in Figure 1.

4 Analysing ABMs

After running an ABM the next step is to analyse the resulting outcomes.
Analysing results is done by observing what happens in the model after a cer-
tain number of iterations, or over a number of runs. Different experimental runs
may use either the same parameters, in order to discover the range of possible
results due only to the effects of random variation; or use systematically varying
parameter values, to test the significance of each parameter set or condition (pa-
rameter sensitivity analysis). In-depth analysis of these observations can aid in
understanding how the ABM is working and how sensitive it may be to different
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parameter values.
In order for ABM (or any model) to be useful to science, it must provide

both a means of explanation and a mechanism for improving that explanation.
The explanatory force of the model is the extent to which an observed meta-
level phenomena can be accounted for by the behaviour of its micro-level actors
(Bryson et al., 2007). Thus, in model validation the explanatory force of the
model is analysed. Models that do not perfectly match real world data can
be improved by postulating additional characteristics of the model; those that
do meet requirements may possibly be improved or made more geneal by sim-
plification — that is by discovering whether any aspects of the model are not
necessary to the outcome and can be removed.

4.1 Parameter Sensitivity Analysis

Sensitivity analysis is used to investigate how input parameters affect the out-
comes of the model. If there is uncertainty in the value for the input parameters
then this analysis will give some idea of the degree to which this impacts the
results from the model. Unless a particular range of parameter values is spec-
ified in the theory behind the model, over-dependence on specific values can
be seen as fragility in the model, though they may also serve as a prediction
coming from the model concerning what values the parameter correlates may
be expected to hold in the target system the model describes.

A commonly used type of parameter sensitivity analysis is investigating the
effect of varying one parameter whilst keeping all the others at their default val-
ues (the ‘fix-all-but-one’ method). With increasing model complexity the effects
parameters have on the outcomes of a model can become exponentially more
difficult to analyse. Varying one parameter at a time reduces this complexity,
but relies on having a default value to set the other parameters to. Where
such values are not known, e.g. when there is insufficient data available, an
ill-considered default value may be chosen and an important range of model
outcomes overlooked. However, if there is data which suggests that only a small
range of values are realistic, then the complexity of the search may be reduced
even where no exact value is known.

A more thorough type of parameter sensitivity analysis is to vary all param-
eters randomly within a predefined range of realistic values. By doing this for
many runs of the model the parameter set space can be investigated more com-
prehensively and there is less chance of overlooking important model outcomes
because of ill-defined default parameter values. However, since this approach
investigates multiple parameter changes at the same time the results are more
challenging to analyse than those using the fix-all-but-one approach. Cluster
analysis can be used to distinguish the types of model output that occur when
the model is run many times with random parameters, and then the parame-
ter value distributions for each cluster can be determined (Gallagher, 2017, pg.
162)
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4.2 Model Verification and Validation

As ABM has become more prevalent there has been an increasing emphasis on
developing methods of verification and validation (Balci, 1998; Kennedy et al.,
2005). Verification is the process of making certain a model runs as designed. In
science, this is roughly equivalent to ensuring that good experimental practice
has been followed. This can be done by debugging and peer reviewing the code
to make sure that all components of the system act as expected. Validation is the
process of making certain the model actually models the target system. When
ABMs are used for sciences such as biology, validation is equivalent to hypothesis
testing (Bryson et al., 2007). Model validation may be seen as one mechanism
of model verification, provided that successfully replicating the behaviour of the
target system is unlikely to occur by chance.

There are only two important criteria for validating an ABM. These are the
same as for validating any behavioural model:

1. Does the behaviour of the ABM match the behaviour of the target system
within the standard metrics of hypothesis evaluation?

2. Do all the attributes of the agents and their environment have plausible
correlates in the target system being modelled?

Regarding the ‘standard metrics’, these depend largely on the success of
previous explanatory efforts. If the literature contains no prior explanation or
model, then it may be sufficient to show a qualitative similarity between the
model and the target system. The model is now a theory explaining the data,
and as the first one it is necessarily the best. However, if there is another
competing model, then we need either to use standard statistical hypothesis
testing to decide which will be the better match, or possibly to argue one model
is more parsimonious, though such arguments can be problematic (Myung et al.,
2000). For the second criterion, the issue is whether the modeller has given the
artificial agents any capacities that real subjects could not or arguably would
not possess.

There is a common perception that ABMs are so complex (that is, have so
many parameters) that they can be made to easily match any data or predict
any outcome, but that having done so the system will have no capacity for
generalisation, and therefore no predictive power. In practice, however, building
and debugging ABMs is a difficult skill, and matching datasets is not easy. While
it is true that ultimately most datasets can be matched, the principle value of
the model is expressing what aspects need to be changed in order to generate
these various outcomes. Again, a working model is best understood as a theory
of the system, and any parameters and parameter values required for that model
to work that were not a part of the original theory are predictions derived from
that theory.

If a model is built first to a set of justified assumptions, and subsequently
matches a dataset with minimal adjustment, then it can be considered to be at
least partially validated. Of course, the more datasets it matches, the better-
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validated the model becomes. As this notion of better-validated implies, valida-
tion is not simply a state that either holds or does not hold for a model. Rather
a model, like any scientific hypothesis, becomes more probable (given the data)
the more it is validated. But a model never becomes perfectly certain (Box,
1979). Indeed, the purpose of any theory is to abstract from the real world, and
that process of abstraction necessarily entails losing detail and precision. The
only exception is if a model becomes understood to such an extent that it can
be proven correct in a logical or formal analytic sense.

This observation returns us to the matter of verification. Verification is
most pernicious in purely formal systems, where validation cannot be grounded
in real-world data. A proof can only be judged by human reasoning, and is
only as good as its premises (Bundy et al., 2005; Edmonds and Bryson, 2004).
Formal systems are used in mathematics and similar disciplines as a mecha-
nism of knowledge discovery, and therefore verification is both more critical
and more difficult. Again, when validation is performed via hypothesis testing
against real-world data, validation itself serves as a form of verification. To the
extent a computational model reliably matches and predicts a target system’s
performance, then it is a model, in the formal sense of the word.

4.3 ABMs as Scientific Hypotheses

The scientific method is a process of “systematic observation and experimen-
tation, inductive and deductive reasoning, and the formation and testing of
hypotheses and theories” (Andersen and Hepburn, 2016). In this way hypothe-
ses can be continuously improved by refinement or rejection. As stated above,
ABMs may be viewed as a scientific theory about how the real-life system be-
haves, and as such model validation is a form of hypothesis testing (Bryson
et al., 2007). Hence, every time we validate a model we can learn something
new about how the real-life system might work, and then refine hypotheses
about this system accordingly. Thus, in the next version of modelling a par-
ticular system we may have even more robust ideas about parameter values or
relationships within the model and its target system.

The analysis of an existing agent-based model can be done as a three phase
process (Bryson et al., 2007). The first phase is a replication of the model. This
may not seem (or even be) strictly necessary in the case where the model is
publicly available — the results in that case can be checked just by rerunning the
original model on another computer. However, reimplementing the model from
its description in the literature can be a valuable exercise. Reimplementation
may uncover important aspects of the model that the model’s original authors
either took for granted, overlooked, or even forgot about during the course of
their research (King, 1995; Axtell et al., 1996). ABMs may be valid without
actually having been fully verified or understood. This is true of any scientific
hypothesis; part of the scientific method is improving this understanding of a
theory as a community.

Once the critical attributes of the model are well-understood, we can enter
the second phase of the analysis, model understanding. Here, we carefully con-

7



sider what the implied or the explicit correlates of those attributes are. Again,
just as in any science, we go through a process of finding testable predictions
and implications that result from our hypothesis. The third and final phase is
testing these predictions and implications, looking first into the extant litera-
ture, and then (if necessary) to proposing and executing new experiments or
measures on the target system.

With regard to the second phase, two similar methods can be used to predict
what parameter values in the model give the most realistic results, and thus help
us to make inferences about the real-life system. These methods are fitting to
idealised outcomes (FIO) (Gallagher et al., 2015) and approximate Bayesian
computation (ABC) (Beaumont, 2010). Both approaches have three steps:

1. The model is run many times with random parameter values.

2. Observed data, whether rich in detail (in the case of ABC) or imprecise
(in the case of FIO), is compared to every run of the model. Model runs
which give the closest match to the observed data are then separated out.

3. The parameter value combinations which were used in these closest-match
model runs are interpreted as potentially being most realistic. Where the
model includes stochastic elements, it is wise to check that the fit holds
for repeated runs.

As mentioned in Section 4.1 step 1 allows trends between the parameters
and the outcomes to be seen, as well as studying parameter interdependencies
and sensitivity.

Step 2 is where ABC and FIO differ. In ABC summary statistic(s) from
observed data are compared to the same summary statistic(s) from the modelled
data. Thus in ABC the comparison of the simulation and observed data is much
more robust, and thus ABC can be used to validate complex models. However,
to do this ABC relies on having detailed observed data which is not always
possible. Thus, if observed data is not rich enough to allow ABC, but either
some general outcome is known or is of interest, FIO can still be used in model
validation.

In step 3 the two methods allow a prediction of what parameter values are
likely to cause observed data, and which parameter values are not. And thus
using these methods we can make new and informed predictions about the real-
life system, which should then be tested in the third phase of analysis.

5 Example – Flocking Behaviour

A popular and early example of ABM is the model of coordinated animal move-
ment posited by Craig Reynolds (Reynolds, 1987). This model, called Boids,
has proven extremely fertile in biology (Couzin et al., 2011; Hemelrijk, 2000).

The Boids model has three basic rules which determine how each agent (or
‘boid’) moves:
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(a) (b) (c)

Figure 2: Positions of agents in the Boid agent-based model by Reynolds
(1987). Implemented in the ‘Flocking’ model example in NetLogo 5.1.0 (Wilen-
sky, 1999). (a) shows the starting positions of agents, (b) shows the positions
of agents after 100 iterations of the model when agents can see moderately far
around them, and (c) shows the positions of agents after 100 iterations of the
model when agents can see very far around them.

1. Separation: if another agent is too close, then steer to avoid it.

2. Alignment: calculate the average direction of the surrounding agents and
steer to move in this same direction.

3. Cohesion: steer to move toward the average position of nearby agents (but
do not get too close).

Depending on various parameter values chosen in this model (e.g. the mini-
mum distance apart and the maximum distance an agent can observe around it-
self) and how long the model is run, different macro-level behaviour can emerge.
For example, if the agents can be quite close together and see moderately far
around them then here might be multiple flocks of agents, but if they can see
very far around them then a single flock of agents can emerge. Examples of
these flocking behaviours can be seen in Figure 2.

The initial locations and directions of agents are randomly chosen every time
the model is run, and thus even with the same parameters each run of the model
can look very different.

As an entirely fictitious example for purpose of illustrating the process of
making predictions from this model, let’s assume that the average number of
birds in a real-life flock is 20, for some species and set of circumstances. We can
run the model many times whilst varying the parameter which accounts for how
far around it each agent can observe other agents. Every time the model is run
we record the mean number of agents in each flock. By selecting the runs of the
model which gave average flock sizes of 20 we can then find which parameter
value was used in these runs. Thus, from this we can make a prediction of the
distance birds can observe the direction of travel and positions of other birds.
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A real-world example of an analysis of a very similar model to boids posited to
explain primate social hierarchies is presented in Bryson et al. (2007).

6 Conclusion

Since the 1980s agent-based modelling has become an increasingly popular tool
in animal behaviour studies, social sciences, economics, and life sciences. ABM
focuses on modelling the micro-level behaviours of the system, and examining
the macro-level effects these can have. To be useful to theory building ABMs
need to the validated by comparison to the real-life system which is being mod-
elled. In this way new insights, sharper intuitions and predictions can be made.

7 CrossReferences

artificial categories, exemplar theory, feature learning (maybe), theory of catego-
rization (maybe), model fitting, behavioral variation, invasive research, Turing
test, Proximate Causation, linkage analysis, parsimony, neural network, vir-
tual reality experiments, intervening variables, motivational state, effect size,
Bayesian causality, teleology, threshold, social network analysis, intervention (if
that’s about experiments)
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