Procedural Quests: A Focus for Agent Interaction in
Role-Playing-Games

John Grey and Joanna Bryson'

Abstract.

In current videogames non-player characters’ (NPCs’) abilities to
be active, dynamic agents are typically constrained to a bare mini-
mum. Agents have very local behaviours to deal with actions, which
can combine in limited ways with global game mechanics to deal
with repeated behaviours. Here we present a systems-Al approach to
designing NPCs. The proposed NPC design is capable of dynamic
dialog, with context generated from both episodic memory and emo-
tional valence towards previous social interactions. The NPCs can
be allowed to run independently of users to develop a believable so-
cial network of friendships and grudges, with memories supporting
such opinions. Additionally, NPCs can spread information in a more
realistic manner than the current standard, global mechanisms. This
information fomrs a culture, which then serves as the motivation for
quests offered to other characters and the user that encounters these
societies.

1 Introduction

In Role-Playing-Games (RPGs) gameplay is typically structured
through quests. Moira Brown’s task to kill some raiders and loot a lo-
cal mall in Fallout 3 is one example of a quest. Quests serve the pur-
pose of directing player action, while also advancing a narrative. Side
quests are types of quests with reduced narrative complexity, which
serve to advance the game in relatively basic ways, for example by
giving a character more experience or weapons. However, in many
games the narrative component of side quests is not just reduced,
but missing entirely. Without a narrative context, such sidequests can
be unmotivated and tedious for players. Additionally quests often
limit the methods of interaction between the player and the world,
and between the player and the non-player characters (NPC) they
encounter. Players’ choices are constrained, and Quest Arcs (col-
lections of quests that create a larger narrative) offer choice only at
branch points in the narrative. Such choices do not affect the gen-
eral world that surrounds the player, or, when they do, this generally
takes the form of global morality meters — single variables that in-
dicate a value known to every character in the game. As such, in a
large number of modern RPGs, killing an NPC will instantly reduce
the player’s global moral standing in the world, even with NPCs who
could not possibly know of the relevant action. All police (or what-
ever the game equivalent may be) will converge to arrest or fight the
player. This is so prevalent a form of interaction in games that it has
entered into videogame humour as:

The Guy in the Street Rule:. No matter how fast you travel, ru-
mours of world events always travel faster. When you get to any-
where, the people on the street are already talking about where

1 University of Bath, UK, email: johngrey4296 @ gmail.com

you’ve been. The stories of your past experiences will spread even
if no witnesses were around to see them. [20]

Believable Social Agents (BSAs) offer a mechanism for reducing
the constraints and rigidity of side quests and increasing the level of
player engagement in computer games without substantially increas-
ing the cost of their production. Such agents autonomously gener-
ate complex social networks of friendships and grudges leading to
a more interesting social landscape when approached by the player.
This gives both the player and NPC more to talk about, automatically
generates variation in game play, and provides more narrative moti-
vation to the quests needed by the player to increase their character’s
status.

Here we present a methodology for developing Believable Social
Agents, as an option to add context to games without the author in-
tensive requirements. We begin with a brief review of quests and
believability. Then we describe our approach and a quest generator
completed under that approach. Finally we describe the developer’s
experience of building in our system, with mention to how we have
extended on the current state of the art for Al representations under-
lying quest generation.

2 Believability and Narrative Quests

We have developed the idea of generative procedural quests from
a variety of literatures relating to games and Al, including story
generation and computational creativity. Of particular importance
are the areas of Quests, both ‘traditional’ and procedural, and Al,
specifically the typical characteristics of videogame Al and suitable
methods for videogames. Quests are most usefully described by Jeff
Howard as the intersection between gameplay and narrative [24]. In
this way, particular patterns of action are combined with a story that
gives context to that action, typically killing someone or something
(a kill quest), or getting an item (a fetch quest).

2.1 Agents

Artificial intelligence has been used in videogames in a wide variety
of forms for many years. These uses of artificial intelligence are gen-
erally concerned with the control of enemies, in the form of individ-
ual enemies in First-Person Shooter games, or overall teams in strat-
egy games. In academic research meanwhile, artificial intelligence
has dealt with a wide range of issues, from learning to natural lan-
guage processing to robotics planning. However, NPC artificial in-
telligence has generally been a lot simpler, with World of Warcraft’s
[7]1 NPCs being prime examples. In World of Warcraft, NPCs stand in
one spot, an exclamation mark above their head indicating they have
a quest available, and are otherwise non-reactive. NPCs of this form



are one form of ‘obviously stupid’ agents that are identified by Bates
as ‘perhaps the primary impediment to fully suspending disbelief”
for a virtual world [5, p2].

Bates [6] goes on to note that there is a difference between the
requirements of traditional artificial intelligence and BSAs, in that
one focuses on high competence and realistic behaviour, while the
other merely requires that an agent ‘not be clearly stupid or unreal’
[6]. This shift of perspective is a very important difference between
interactive fiction perspectives and more traditional Al perspectives.
Blumberg [8] points out that the classic era of animation contained
many characters that are believable — that is, immersive and emo-
tionally engaging — without being even slightly realistic. They com-
municate emotional state with grossly exagerated gestures and ac-
tions, yet maintain our identification and sympathy. This description
is congruent with Mateas’ [25, p8], and also Barros arguments [4]
which highlight a very specific difference between the two styles.
In traditional Al planning of behaviours, the emphasis is generally
on the optimality of the solution, as discussed in [9]. In ‘expressive
AT’ [25, p5] there are ‘softer’ dramatic constraints [4, p35]. Current
agents in games that will stand in the same place for the entire game,
or run screaming for 2 metres when the player kills someone, but then
turn around and continue calmly on their way, is very clearly stupid
and unreal, thus supporting Bates. In the present work, we generate
side quests procedurally, based on both local events and local knowl-
edge of historic events. In so doing, we utilize research into agents
and Al in a constrained context, making the actions and behaviours
of NPCs emerge naturally from the dynamics of the game, in con-
trast to either isolated or overly global supplements. This increase
believability.

The approaches available for implementing the sorts of agents
needed for quests are divided into two main categories by Mateas
[25], who makes a distinction between ‘Classical’ agent approaches,
and ‘Interactionist’ approaches. Classical approaches attempt to
model mental processes, while Interactionist, or Behaviour Based
approaches focus on the results of intelligence. Mateas and others
have concluded that interactionist approaches are more useful in ap-
plication to believable game and story agents, both because of their
dynamic nature — responding in a natural way to environmental con-
tingencies, and because they are easier to develop in [28, 8, 33, 13].

The interactionist approach — dynamic, behaviour based or some-
times ‘reactive’ AI — is sometimes denigrated as being too simple
to carry a narrative plot, because the individual agents ‘only’ react
to their environment and the opportunities is presents. In both indi-
vidual agents and game Al more generally, many have felt a need to
reintroduce the structure of a more formal planning system “on top”
of the behaviour based system, in order to guarantee structured, co-
herant plans [14]. This approach allows the combination of low-level
behaviours and dynamic / reactive plans that do not require compu-
tationally expensive searching, and computationally expensive con-
structive planners which run less frequently but perform the global
reasoning for an overall plan. Examples of this approach include
interactive story generators such as Mateas’ Facade [25] or Hayes-
Roth’s woggles [22]. These include a drama manager that closely
resembles a typical constructive planner, but also include individual
character agents. Drama managers are also simiarl to Game Masters
in traditional Pen and Paper RPGs [3]. These views, combined with
Brom’s work in Emohawk [10] suggest that autonomous characters
require more than just basic behaviours and reactive plans at the in-
dividual agent level to create sufficient dynamic worlds, despite the
variety of character-focused methods of story generation. On a re-
lated note, Bryson [13] has previously argued that the best approach

to game design is to in fact facilitate authors in creating characters
that will drive the narrative for themselves.

Despite their emphasis on narrative, Mateas and Aylett both fo-
cus on engaging interactive stories, and thus miss the side-quest as
an avenue for more structured game narratives. We believe that in
fact the narrative needs of a side quest provide enough context for
a meaningful dynamic world without requiring the encumberment
of an overarching managers that resemble the story generation pro-
grams mentioned earlier. This is the approach taken in the present
work.

2.2 Procedural Quests and Social Agents

Actual attempts at, and considerations of, procedural quests are few
and far between. Calvin Ashmore’s work on Charbitat is an impor-
tant exception, generating procedural worlds with spatial quests of a
key-lock form [2]. However, that work does not deal with creating
meaning, either in Howard’s or Salen’s conception. Anne Sullivan’s
work on the GrailGM takes an alternative path from that of this work,
and uses a Quest manager instead of agents [35]. Although this ap-
proach can work, it should be noted that procedural quests are simi-
lar to computer-based story generation, in that both may take either
story or character-centric approaches [32]. Story-centric managers
can provide greater narrative coherence, while character-centric ap-
proaches can enable more believable and understandable actions by
characters.

Meanwhile, there have been experiments with procedural quests
in videogames. Notably the game Yoda Stories, which generates both
the worlds and the story to be followed in each play through of the
game. Similarly Din’s Curse enables enemies that live long enough
to become unique, which then triggers quests to kill that particularly-
important enemy. Additionally, Din’s Curse operates through having
archetypes of characters within a town, rather than named characters,
allowing quests interrupted by a death of a character, to trigger a new
quest of finding a new instance of that archetype.

Related work deals with Believable Social Agents in interactive
contexts, but this is also relatively limited. Per Persson deals with in-
teractivity, but the requirements of interactive narrative would appear
to be greater than those needed for the creation of contexts for quests,
and as such would unnecessarily complicate matters [30]. Michael
Mateas’ work, both on Facade [27], and The Prom [26] are the pri-
mary works concerning social behaviours as a part of game mechan-
ics. However, these place relatively complex agents at the forefront
of a game’s dynamics, and are as such described as Social Games,
in that the main game mechanics revolve around social interactions,
which is quite different from the intended genres of this current work,
which is RPGs.

3 NPC Design for Believable Social Agents

In this section we introduce our approach to creatin gthe social an-
gents that will in time generate a beliveable society to engage the
player. The principle design elements for Believable Social Agents
are:

1. A set of general-purpose priorities for the agent.
2. Individual memory and perception.
3. Conversational ability.

An implemented Believable Social Agent can then instantiate
quests as necessary, which requires particular considerations for the
design of such quests.



Prince

Figure 1. A typical view in the prototype game

3.1 General Prioritised Action Selection

NPC and Agent design is a broad area that may utilise a number
of approaches. Recently particular emphasis has been given to the
use of Behaviour Trees and Hierarchical Plans for agents in games
[23]. Although neural nets have been used in some games such as
Creatures [18], Behaviour based approaches appear to be favoured
in modern videogames due to their modularity, ease of creation, revi-
sion, and their relatively light processing requirements [19]. We have
chosen to use the Behaviour Oriented Design (BOD) approach to
develop our NPC [17]. BOD provides a set of heuristics and an itera-
tive development strategy for creating both character behaviour and a
hierarchical control the Prioritised, Ordered, Slip-stack Hierarchical
(POSH) dynamic plans, which are similar to behaviour trees. BOD
has previously been applied to video games and has been featured in
some game Al design tools [12, 1].
BOD addresses the requirements of BSA in the following way:

1. A set of general-purpose priorities for the agent. We encode these
in terms of BOD’s POSH plans, although any hierarchical Al plan-
ning structure could be used.

2. Individual memory and perception. Under BOD (like OOD [21])
the capacity for memory is specified in behaviour modules which
also provide methods for generating and accessing that memory,
and further methods for acting on it.

3. Conversational ability. BOD does not provide these specifically,
but rather we customised a set of general-purpose language abil-

(Strong / Scary Enemy Nearby)=>Flee
(Suitable Enemy Nearby)=>Designate to Attack
(Target Designated)=-Attack
(NPC Designated)=Talk
(Item Designated)=>Pickup
(Suitable NPC Nearby)=-Designate to Talk
(Suitable Item Nearby)=-Designate to Pick up
(Quest in Memory)=>-Quest Action Designation
()= Process Memories

(¢))

Figure 2. The BSA Drive Collection

(Strong / Scary Enemy Nearby)=>Flee
(Target Designated)=-Attack
(NPC Designated)=Talk
(Item Designated)=>Pickup
(Suitable Enemy Nearby)=>Designate to Attack
(Suitable NPC Nearby)=-Designate to Talk
(Suitable Item Nearby)=>Designate to Pick up
(Quest in Memory)=-Quest Action Designation
()=Process Memories

(@)

Figure 3. The original, easily interruptible, BSA Drive Collection

ities, utilising the memory capabilities of the agent extensively.
These are described below.

In BOD, the top of the plan hierarchy is the Drive Collection,
which determines which of the behaviours available to an agent
should be executed at any particular instant. In this article we illus-
trate single levels of a POSH hierarchy, which from this perspective
are very similar to a STRIPS plan or Nilsson’s Teleo-Reactive Plans
[16, 29]. Within each sub-component of the hierarchy, each possible
action is guarded both by a necessary precondition which the agent
must sense, and by a priority. If more than one action can be exe-
cuted, the highest-priority one of these is executed.

Figure 2 shows the drive collection for all the BSAs in our so-
ciety. What differs between agents are not their abstract priorities,
but rathere their experience, memory, and physical location. The ac-
tions derived from the drive collection form the basic abilities from
which quests can be constructed. These actions are sequenced by the
interaction of the POSH planner and its environment — the plan el-
ements are arranged in an order such that they will generate action
and change in both the character and the world. As the current fo-
cus for quests are killing and fetching, this short list of behaviours
is sufficient. The general pattern for quest activities is to talk to an
NPC, receive a quest, then move to a target location, either kill an
NPC or pickup an item, and then return to the original NPC. Thus,
the Quest Action Designation behaviour merely queries a quest and,
according to the state of the quest, deals with the target, or returns to
the original giving NPC.

The ordering of behaviours, placing the designation of talking and
item targets lower in the priority of the plan as a group, while having
attack designation higher than the attack action, is to ensure believ-
able behaviour. If the drives were arranged as in Figure 3, agents
could move across the world to attack a particular individual, all the
while being under attack from others enemies. This is undesirable
for combat, but slightly more desirable for communication and item
behaviours.

3.2 Episodic Memory, Emotions and Perception

The memory and emotional capabilities of the NPCs are used to pro-
vide context for generated quests. The general concepts of the design
are based on Brom ez al’s episodic memory [11]. Memories are a par-
ticular data structure, based on a Memory Primitive (MP) that holds
any information that the system may want to recall, such as the NPCs
involved in the action, the type of action, and any items involved in
the action. Specialising the memory in this way may seem restricted
compared to general-purpose Cognitive Architectures such as SOAR
[31], but such restriction helps keep the design clear and the game
Al light-weight. The essential element of a MP is that it has an ac-



Perceived Action Received Conversation Action

\-\‘1 Y
Short Term Memory
.Mem‘ Quest
Mem
N A\ Al
Emotions Memories Quests
' Agent: Bob Agents: Bob Quest: Kill
Fear: 75 Bill Ta_rge'F: Bob
Like: 25 Action: Kill Glver: Jane
Hate: 55
Decay: 25
Agent: Bill Agent: Bob
Fear: 75 Action: Pickup
Like: 25 Target: Orange
Hate: 55

Figure 4. Structure of Agent Memory

tion variable which can describe whatever high level actions an agent
can take. Thus, for all main drives in the drive collection (attacking,
fleeing, talking, picking up items) there is an enumeration that can
be inserted into the action variable. Coupled with variables to store
the actors in that memory, there arises a simple data structure that
can describe anything (Bob killed Alice, Bill picked up orange etc)
an agent can do quite simply. As capabilities are added to the agents
Drive Collection, the enumeration of actions grows as well. Add a
drink ability, there is a need for a drink enumeration and so forth.

Emotions form another data structure in the overall memory de-
sign. Each NPC has one instantiation of the emotion data structure
associated with every other individual character it knows. They hold
basic integer values to record particular strengths of opinion, such
as fear and hate. In this system, emotions are not a transient state as
often understood in research [36]. Rather here, emotions are labels
for long-term valence directed toward a particular individual, using
such emotional terms as hate, friendliness, and fear. As events are
perceived (described below), the emotional values for the perceived
actors are adjusted as necessary.

The actual structure for the memory is relatively simplistic, with
the entire memory shown in Figure 4. Memories are received through
aregular perception of local events, or generated based on the agents’
own behaviour, and added into a short term memory (STM) object.

(Turn to Speak)=Speak
(Turn to Listen)=>Listen
(Turn to Wait)=-Wait
()=Sort Conversation Turn

3

Figure 5. The Conversation Competence

(Moving and Close to NPC)=-Stop Moving
(Has said something previously)=>Clear Text
< (Has nothing selected to say)=>Select Something to Say > 4)
(Has something selected to say)=-Set Speech Text
()=Finish

Figure 6. The Speak Sequence

The low priority element of the Drive Collection Process Memories,
seen in Figure 2, assesses any MPs in the stack. Memories that oc-
curred recently are processed sooner, enabling potential functional-
ity for if too many things happen, older memories that have not been
processed are removed and forgotten without being processed. The
assessment of items in the STM does three separate things:

e Changes the emotion values of all involved parties of the MP
based on general rules of behaviour (eg: random attacks will de-
crease friendliness and increase fear, giving items will increase
friendliness).

o Adds the MP to the long term memory if it is of a type important
enough.

e Removes the assessed MP from the STM.

Additionally, when added to the long term memory, each MP ini-
tialises a decay value, which is regularly decremented if it is not ac-
cessed. If a memory is accessed and used, its decay value is reset. If
an MP’s decay value reaches zero, the memory is removed, and thus
‘forgotten’. Memories provide, among other things, specific reasons
for the creation of quests (“Bob killed Bill so I want Bob killed”),
while emotions provide a more general context (“I really hate Bob
so [ want him killed”). Additionally the two may be combined (“Bob
killed Bill, who I liked, so I want Bob dead”).

The emotion system gives agents reasons for actions, without hav-
ing specific memories to support such quests. This serves a twofold
purpose. Firstly, it can provide initial conditions for the generation of
quests prior to the generation of memories. Secondly, it allows mem-
ories to be forgotten, reducing actual memory requirements and la-
tency of the program, while keeping the effects of the actions through
the emotion variables.

3.3 Communication

Communication between agents, or between the player and an agent,
is an interaction using the conversation competence, which is con-
tained in the Drive Collection of the NPC. The BOD elements nec-
essary for conversation are the competence seen in Figure 5, and the
memory of the participants of the conversation (described above).
The method of conversation is separated into the passing of under-
lying, conversational primitives (CP), and the conversion of those



primitives into human understandable text. CPs are passed between
agents in a ‘Pull’ model, from the speaker to the listener, in the Listen
action in Figure 5. Meanwhile, to make conversation understandable
to humans, CPs are converted into text in the Set Speech Text action
in Figure 6.

CPs are essentially a subclass of the primary Memory Primitive
with additional variables to define the type of statement, and al-
low conversation to refer to particular memories, other conversa-
tional primitives, additional agents and items etc. The conversion
process from Conversational Primitive to human understandable text
is straightforward. Based on the type of conversational primitive (e.g.
Greeting), a particular string is retrieved. Then, any variables in that
string (such as ‘NPC_I_ AM_TALKING_TO’) are replaced by the ap-
propriate value (like the name ‘Bob’), eventually resulting in the hu-
man readable text (‘Good Morning Bob’), which, in the prototype
game, is displayed above the agent’s sprite. This basic level of vari-
ability in statements can provide a surprising amount of freedom with
a minimum amount of work.

Although BOD has previously been proposed as a mechanism for
dialog planning [15], the present work represents the first application
to our knowledge of POSH to conversational agents. Typically, con-
versation in computer games take the form of Conversation Trees, as
can be seen in the Fallout 3 GECK. In the present work, conversation
is ordered into two POSH competences: one for giving and one for
receiving. Receiving is the simpler capability, in that it takes the last
CP from the agent being talked to, and stores the information in the
short term memory. The giving capability deals with selecting a new
CP to offer up for the talk partner to receive, and add the relevant de-
tails to it. This decision process can be surprisingly simple through
use of nested competences. The current implementation though has
just a limited number of statement possibilities in a single layered
plan, seen in Figure 7.

3.4 Quest Design

For the agents to be able to give and complete quests, the archetypes
of quests from which instantiations are built need to be designed ap-
propriately. In this work, there are just two quest types, but with ad-
ditional game mechanics to utilize, additional quests archetypes can
be designed. The essential parts of the quest design is to ensure:

e Quest Archetypes are understandably linked with the contexts that
justify them (hating someone results in wishing them dead, not
wanting them to have an apple pie).

e Quest Archetypes have defined structures (go there, kill/pickup
that, return here) which can be understood and are utilised in the
agents’ quest fulfilment drive.

e Quest Archetypes deal with general events, with variables that can
be filled as needed (so a KILL_QUEST has a variable of X that
designates the target).

(Received or Given Focus or response)=-Say Goodbye
(Received a focus of something to give)=-Give focus
< (Received a Question)=>Give appropriate response > )
(Has Given a Quest to NPC previously)=-Enquire about Quest
(Has Greeted)=-Ask a question
()=Greet

Figure 7. The Speech Selection competence

4 Example — Generating and Communicating
Quests in a Virtual World

This work was done in a prototype game of a top-down, Legend
of Zelda style, called Shadow Quest that was originally created by
Prageeth Silva [34]. An example screenshot is shown in Figure 1.

We describe how such agents can be used to enable generative
dynamic quest systems. Additionally we offer potential pathways to
increase the flexibility of the current design very easily.

4.1 Designing Generative Quests: The Developer’s
Perspective

There are five main elements to the process by which a developer
could add additional quests to the described quest generator. In the
following sections these elements shall be described, and highlighted
through the example of the addition of a "Make Poison’ quest type.
The five stages of the implementation would be designing the base
quest, implementing any supporting systems for the quest, imple-
menting base level plans for the NPC agents, defining the related
actions and quests in the memory, and finally adding the various con-
versation options into the conversation plan.

4.1.1 Choosing the Base Quest design

This starting stage essentially is the point at which the quest, from
which all related plans, conversations, and memories etc, will be de-
rived from. Thus, a quest could be designed for a ‘Make Poison’
quest, with a generic understanding of the quest consisting of:

e A quest of this type being given to an individual that is liked rather
than hated or feared

e The quest receiver needing to get a number of items, go to a par-
ticular location, and combine them to create the poison

e The quest receiver returning to give the created poison to the quest
giver

This quest type would be a ‘subclass’ as it were, of the typical
*fetch item’ quest type. From this it is recognised that there would
need to be some sort of game mechanic that would allow items to be
combined to create other items. This leads to the second stage of the
implementation process.

4.1.2 Creating the Base system to enable the quest

Following the generic understanding of the quest, any supporting
game mechanics would need to be implemented. This is why the
main design described above only considers ‘kill” and ‘fetch’ quests,
as others would require additional game mechanics. An alternative is
to create the general game mechanics, or work with a system with a
set of game mechanics already, and then create quests designed for
those mechanics. This is merely a position determined by the stage of
development, underlying technology of the development, and prefer-
ence of the developer. As such, in this example, the imaginary game
that the “‘Make Poison’ quest shall be added to will need an alchemy
game mechanic, available to the player, and imitable by any NPCs.
This would merely require that NPCs could perform any observable
actions that the player can in the course of using alchemy: getting
items, going to a workbench, creating a large puff of smoke, losing
the correct ingredients, and receiving the right poison.



4.1.3 Creating Definitions in memory

Before an agent can do the elements of a quest, agents need to be
able to understand the quest in terms of whether it is good or bad,
whether it is something you would do to or for a friend or an enemy
etc. Thus, memory structures would need to be created to describe
the alchemise action(s). This would actually consist of adding to an
enumerated list of actions available, and adjusting any perception
routines as necessary. So instead of agents perceiving other agents
of doing nothing while standing at a work bench, they can retrieve
the ‘alchemise’ enumeration, and add that into an action memory
along with the agent’s name, and maybe the resulting poison that
was created from doing the alchemise action.

4.1.4 Creating the Plan for the Agent

The next stage of development would require that there be the various
plans created for the agents to enable use of alchemy. There would
generally be at least two, possibly three, different plans at this stage
to create:

e The Drive to Alchemise items to create the poison

e The Competence in the Quest Action Designation to describe the
order of actions to complete the quest

e Any memory processing needs to place quests in memory and alter
emotions.

Thus, the Drive collection (figure 2) would have an alchemise
drive, that takes the agent to the workbench, and transfers the items
to the workbench, calls the game mechanic to convert the items into
the poison, and then picks up the poison. The competence for com-
pleting the entire quest would not only designate the target of an
Alchemise action, and designate who to return to when finished, but
also a repeatable section of the competence to retrieve as many items
as were needed for the alchemise action to be successful, utilising
a reuse of the already created ‘fetch’ quest type, or a ‘subclass’ of
it, to ensure the agent went and found all the ingredients. Meanwhile
changing memory processing rules etc merely adds an additional rule
or set of rules to deal with the particular quest. So creating a poison
would possibly be something to be scared of the agent it is made for,
or something to like the agent for if the design of conversations later
on tie the intention of making a poison to a potential target, who is
disliked.

4.1.5 Creating Conversation Options

Once agents can perceive others as doing the ‘alchemise’ action, they
have memory structures for the quest. Thus, they merely need to have
any appropriate string(s) created to be inserted in the already exist-
ing conversational strings. There would be very little aspects of con-
versation that would be created entirely from scratch. Agents could,
instead of asking “Would you please KILL BOB for me’, they can ask
‘Would you please MAKE A POISON for me’, or other such permu-
tations of basic sentences. In a similar way, gossip and memory pass-
ing sentences such as ‘Did you hear that BOB KILLED BILL’ could
become ‘Did you hear that BOB CREATED A POISON’ or even ‘Did
you hear that BOB CREATED A POISON FOR JILL’. There would
be no need to create whole new structures for the conversations, as
most elements would already exist and would not need specific con-
text, such as acknowledgements (‘yes, i did hear that’), and accep-
tance and refusal of the proposed quest.

4.2 Procedural Quests from the Player’s
perspective

From the player’s perspective, the added quest can fit into gameplay
and interaction with NPCs reasonably fluidly. Thus, in the imaginary
new game, where alchemy and the alchemy quest has been imple-
mented, and an expanded ‘kill” quest has been created (of the form:
1) get give quest, 2) make, take, or ask for poison, 3) kill target with
poison 4) return to original quest giver), the following sequence of
events could occur:

e Bob dislikes Bill (due to random initialised emotion, or an actual
memory)

e Bob asks Jill to kill Bill, because of the memory or emotion.

e Jill also dislikes Bill, and so accepts.

o Jill uses the expanded kill quest form, asking Jack to make her a
poison.

e Jack, liking Jill, accepts, and performs the quest; getting ingredi-
ents, making the poison and then returning to Jill.

e Jill, now with the poison, goes and fulfils her quest by killing Bill
with it. She returns to Bob, who is pleased with her.

The above, preliminary, sequence of events also has a number of
secondary effects:

e To get the ingredients, Jack takes something from Bob. Bob then
dislikes Jack slightly.

e Jack, who liked Bill, hears about, or witnesses, Jill killing Bill. He
then hates Jill.

e Upon meeting the player, Jack gives the player a quest to kill Jill.

e The Player kills Jill, Bob hears and hates the player, asking Jack
to kill the Player. Jack, liking the Player alot, refuses. Bob then
attacks both the Player and Jack.

The secondary effects of the original kill quest produces a range
of different actions. In this example quite extreme results, but further
quest design and conversation options can allow for reproach, lies,
and refusals to help in other situations, possibly even watching oth-
ers getting attacked and killed without helping. However, what the
effects, the quests given, and the conversations and gossip that occur
in the game, all begin to tie each individual in the game together. Ad-
ditionally, although there can be numerous effects of people liking
some people, others hating others, and so on, it does not get confus-
ing for the player, because in all conversations the NPCs can state
their position. They will not just go ‘kill Bob, because I say so’, they
will command ‘kill Bob, because I hate him/ he killed my brother’,
or ‘I don’t like Bill, he stole my MacGuffin, go get it back for me’.

5 Discussion

We have proposed a suitable design for NPCs that can perceive ac-
tions around them, communicate those perceived actions between
each other, and use such memories as the context for various sid-
equests in RPGs. Although currently the design is relatively basic,
there are sufficient strengths to warrant further development. In par-
ticular, there are various aspects of the design that mean it can be
easily used in videogames, and expanded upon. Additionally, the
proposed design goes some way to address the types of meaning de-
scribed in section 2.



5.1 Creating a continuum from Local to Global
effects of actions

Due to the agent’s capability to perceive actions nearby, remember
them, and then transmit them in ‘conversation’ to other agents, there
can arise a fluid continuum of effects. Locals effects, as seen cur-
rently, of NPCs running screaming from a murder remains. However,
now, instead of an automatic global morality value that is effected
by the murder, the NPCs can pass information between them, which
can be used to colour interactions. Eventually, it can reach a state
where most NPCs know about the action, which can approximate the
global value. Furthermore, as time goes by, the individual action is
‘forgotten’ in the NPC memory structures, leaving only the long term
emotional valence. Whether this is preferable to the current situation
would require a large amount of testing in a more aesthetically com-
plete game, rather than a prototype.

5.2 Suitability for Use in Games

The proposed design is reasonably suitable for use in videogames in a
number of ways. In terms of memory and processor use, the design is
not currently optimised, but hints at opportunities in that area. POSH
action selection is designed to reduce the combinatorial bottleneck
of tree searches, and is unlikely to be more processor intensive than
a similar Behaviour Tree implementation, which, as has been noted
previously, is a method rapidly gaining popularity for videogame Al
Additionally, the memory design of the agents is suited to working
with limited resource situations, as memories can decay, leaving only
an emotional valence that can still be used to justify quests. Admit-
tedly there could still be a certain amount of resources required for
holding the emotion variables for each NPC, but again, these could
be easily designed to decay if not used. Quests meanwhile need only
be instantiated if an NPC accepts the quest, while could be automat-
ically rejected if there is not enough available memory.

In terms of actual use in videogames, this proposed design only
deals with the creation of quests, and the surrounding context for
them. It does not however deal with the creation of Quest Spaces in
which to perform quests. As such, this system would need to be able
to be combined with some amount of procedural level generator [2],
or an Al ‘Director’ to populate a static space with challenges in a
similar way to Valve’s Left 4 Dead.

Additionally, through use of this design, additional NPCs can be
created with no increase of authorial effect. Once a single NPC is
complete, the only areas that need to be added to are the list of basic
strings which form sentences (there does not need to be a one to one
relationship between Conversational Primitive and string. EG: There
can be multiple ways to greet someone, not just ’Good morning X’),
quest types, and names. To create differences, the NPCs just need to
have randomised starting emotions to some NPCs, and be left to run
for a while.

5.3 Freedom for expansion of the NPC design

The design, having been developed using BOD, errs on the side of
simplicity and ease of redesign. As such, although the current de-
sign only deals with a limited number of behaviours, conversational
options and quests, it is relatively trivial to implement additional ca-
pabilities. Of particular interest are the following:

5.3.1 Meta-Level Agents

Meta-level agents can, in this context, encompass a range of possi-
bilities for more complex NPC interactions. With a slight addition,
there can be non-physical ‘Gods’ that talk to only one individual, or
put particular individuals on quests. Additionally, Meta-level agents
can serve the purpose of creating factions, allowing groups of indi-
viduals to perform the same quests, or have telepaths, common goals,
or even specialised behaviours (see below).

5.3.2  Expanded Quest Design

Although at the moment there are just two types of quests accounted
for in the design, kill quests and fetch quests, two points need to be
considered. Firstly, Kill quests and Fetch quests are so prevalent in
games due to the variety they can achieve. There can be assassina-
tions (kill quests with stealth requirements), protection quests (kill
everything apart from the target), stealing quests (Fetch quest with
stealth requirements), information quests (Fetch quest but with the
requirement being information instead of an item) and so on. There
are a great variety of quests that are descended from Kill and Fetch
quests, and that is without considering Quest arcs and the alterna-
tive conception of quests offered by Wibroe [37]. All of these can be
easily implemented into the proposed design, merely adding the nec-
essary behaviours to the agent, creating new quest archetypes, and
memory or conversational primitives.

Additionally, large amounts of variation could be achieved through
changing the focus of quests to become procedural behaviours. Such
that instead of an NPC performing a quest once, he checks that he
is constantly performing the quest. A trivial example of this would
be creating a behaviour archetype that says the agent has to hop on
one foot constantly. Combining this with the Meta-Level Agents de-
scribed above, can easily create factions with particular idiosyncratic
behaviours (eg: a warrior clan that hops on one foot all the time).
It would then be a trivial matter to use perceptions of other agents
Not performing that behaviour as an issue, which would result in a
location based ‘law’ stating that an agent would need to hop on one
foot when in the camp of those particular warriors. Again, although
this example is humorous, the underlying possibilities are both easily
adaptable and an expansion of the proposed NPC design.

5.3.3  Personality and Speech

Finally, there is no consideration of personality and other idiosyn-
crasies in the proposed design. These would also be very easy to im-
plement into the design if necessary. Most RPGs have a large number
of statistics to create individual differences, ranging from strength to
charisma and intelligence. These are perfectly situated to enable in-
dividual differences in the proposed NPC design. Combining these
statistics with basic signal processing concepts such as compression,
expansion, and transfer functions would easily allow the opinions of
other NPCs to be affected by base personality stats. The result would
be that NPCs could have varying levels of emotional responses, so
that a murder next to them does not effect them, or someone saying
hello to them instantly makes them loath the NPC. Additionally, a
simple addition of an emotional variable to the Conversational Prim-
itive design would allow variation in the generated human readable
text of NPCs, allowing greetings to easily range from ‘Good morn-
ing X!’, to ‘oh, its you’, with only the required change to the CP,
the speech selection action, and the addition of meta data to the se-
lectable strings available for speech.



6 Conclusion and Future Work

We have presented a design for easily implementable NPCs for use
in RPGs. These NPCs have the capability to observe others, remem-
ber actions, and communicate remembered actions with other NPCs.
They can use such memories to justify the request or offering of per-
forming particular quests. Additionally, we have shown how the de-
sign is easily expandable to deal with other common elements of
RPGs such as factions and personality.

Future work can take a number of distinct pathways. We plan to
address the theoretical nature of this paper by implementing the Al
design into a custom made, aesthetically complete game. We then in-
tend to run a number of tests to investigate the effects of such ‘capa-
ble’ NPCs on player experience. It may be that only some proportion
of a crowd should be ‘interesting’, not all of it. Regardless of this,
we think Social Agents of this type could be a powerful creative use
of Al in videogames. We also intend to investigate their application
into the field of dynamic, computer generated music.

REFERENCES

[1] A. Armstrong. The Behaviour-Oriented Design of Modular Agent
Intelligence.  http://aigamedev.com/open/reviews/behavior-oriented-
design-modular-agent/, 03 2008.

[2] C. Ashmore and M. Nitsche, ‘The Quest in a Generated World’, in
Proc. 2007 Digital Games Research Assoc.(DiGRA) Conference: Sit-
uated Play, pp. 503-509. Citeseer, (2007).

[3] R Aylett, S Louchart, A Tychsen, M Hitchens, R Figueiredo, and C D
Mata, ‘Managing Emergent Character-Based Narrative’, in Proceed-
ings of The Second International Conference on Intelligent Technolo-
gies for Interactive Entertainment, Cancun, Mexico, (2008).

[4] L M Barros and S R Musse, ‘Introducing Narrative Principles Into
Planning-Based Interactive Storytelling’, in Proceedings of the 2005
ACM SIGCHI International Conference on Advances in Computer En-
tertainment Technology, pp. 35-42, Valencia, Spain, (2005).

[5] J Bates. The Nature of Character in Interative Worlds and The Oz
Project, 1992.

[6] T Bates, B Loyall, and W S Reilly, ‘Broad Agents’, in Proceedings of

the Fifteenth Annual Conference of the Cognitive Science Society, Boul-
der, Colorado, (1992).

[71 Blizzard Entertainment. World of Warcraft, 2005.

[8] Bruce Mitchell Blumberg, Old Tricks, New Dogs: Ethology and Inter-
active Creatures, Ph.D. dissertation, MIT, September 1996. Media Lab-
oratory, Learning and Common Sense Section.

[9] C Brom. Personal Communication, 2010.

[10] C Brom, M Bida, J] Gemrot, R Kadlec, and T Plch, ‘Emohawk: Search-
ing for a ”Good” Emergent Narrative’, in Interactive Storytelling: Sec-
ond Joint International Conference on Interactive Digital Storytelling,
eds., I A Turgel, N Zagalo, and P Petta, pp. 86-91, Guimaraes, Portugal,
(2009). ICIDS 2009.

C. Brom, K. Peskovd, and J. Lukavsky, “What does your actor remem-
ber? towards characters with a full episodic memory’, Virtual Story-
telling. Using Virtual Reality Technologies for Storytelling, 89-101,
(2007).

Cyril Brom, Jakub Gemrot, Michal Bida, Ondrej Burkert, Sam J. Part-
ington, and Joanna J. Bryson, ‘POSH tools for game agent development
by students and non-programmers’, in The Ninth International Com-
puter Games Conference: Al, Mobile, Educational and Serious Games,
eds., Qasim Mehdi, Fred Mtenzi, Bryan Duggan, and Hugh McAtam-
ney, pp. 126-133. University of Wolverhampton, (November 2006).
Joanna J. Bryson, ‘Creativity by design: A behaviour-based approach
to creating creative play’, in AISB’99 Symposium on Creativity in En-
tertainment and Visual Art, ed., Frank Nack, pp. 9-16, Sussex, (1999).
The Society for the Study of Artificial Intelligence and the Simulation
of Behaviour.

Joanna J. Bryson, ‘Cross-paradigm analysis of autonomous agent ar-
chitecture’, Journal of Experimental and Theoretical Artificial Intelli-
gence, 12(2), 165-190, (2000).

Joanna J. Bryson, ‘Making modularity work: Combining memory sys-
tems and intelligent processes in a dialog agent’, in AISB’00 Sympo-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

(33]

[34]

[35]

[36]

[37]

sium on Designing a Functioning Mind, ed., Aaron Sloman, pp. 21-30,
(2000).

Joanna J. Bryson and Lynn Andrea Stein, ‘Architectures and idioms:
Making progress in agent design’, in The Seventh International Work-
shop on Agent Theories, Architectures, and Languages (ATAL2000),
eds., C. Castelfranchi and Y. Lespérance, pp. 73-88. Springer, (2001).
Joanna J. Bryson and Lynn Andrea Stein, ‘Modularity and design in
reactive intelligence’, in Proceedings of the 17" International Joint
Conference on Artificial Intelligence, pp. 1115-1120, Seattle, (August
2001). Morgan Kaufmann.

A. J. Champandard. Evolving with creatures’ ai: 15 tricks to mutate
into your own game. http://aigamedev.com/open/highlights/creatures-
ai/, October 2007.

A. J. Champandard. This year in game ai: Analysis, trends from 2010
and predictions for 2011. http://aigamedev.com/open/editorial/2010-
retrospective/, January 2011.

Aaron et al. The Grand List of Console Role Playing Game Cliches,
2010.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software, Addi-
son Wesley, Reading, MA, 1995.

Barbara Hayes-Roth and Robert van Gent, ‘Story-making with impro-
visational puppets’, in Proceedings of the First International Confer-
ence on Autonomous Agents, ed., W. Lewis Johnson, pp. 1-7. ACM
press, (February 1997).

C. Hecker. My liner notes for spore/spore behavior tree
docs. http://chrishecker.com/My_Liner_Notes_for_Spore/Spore-
_Behavior_Tree_Docs, April 2009.

Jeff Howard, Quests: Design, Theory, and History in Games and Nar-
ratives, A K. Peters, 2008.

M Mateas, Interactive Drama, Art and Artificial Intelligence, Ph.D. dis-
sertation, Carnegie Mellon University, 2002.

M. Mateas, ‘The authoring challeng in interactive storytelling’, in Pro-
ceedings of Interactive Digital StoryTelling, ICIDS, eds., R. Aylett,
M. Y. Lim, S. Louchart, P. Petta, and M. Riedl, p. 1. Springer, (2010).
M. Mateas and A. Stern, ‘Facade: An experiment in building a fully-
realized interactive drama’, in Game Developers Conference, Game
Design track. Citeseer, (2003).

Michael Mateas, ‘An oz-centric review of interactive drama and believ-
able agents’, Technical Report CMU-CS-97-156, School of Computer
Science, Carnegie Mellon University, (June 1997).

Nils J. Nilsson, ‘Teleo-reactive programs for agent control’, Journal of
Artificial Intelligence Research, 1, 139-158, (1994).

Per Persson, Jarmo Laaksolahti, and Peter Lonnqvist, ‘Understanding
socially intelligent agents - a multilayered phenomenon’, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part A, 31(5), 349-360,
(2001).

P.S. Rosenbloom, A. Newell, and J.E. Laird, Soar Papers: Research on
Integrated Intelligence, MIT Press Cambridge, MA, USA, 1993.

M.L. Ryan, Possible worlds, artificial intelligence, and narrative the-
ory, Indiana Univ Pr, 1991.

Phoebe Sengers, ‘Do the thing right: An architecture for action expres-
sion’, in Proceedings of the Second International Conference on Au-
tonomous Agents, eds., Katia P Sycara and Michael Wooldridge, pp.
24-31. ACM Press, (1998).

Prageeth Silva. Shadow Quest. http://shadowquest.thenewcoders.net/,
2010.

Wardrip-Fruin N. Sullivan, A. and Mateas M., ‘Rules of engagement:
Moving beyond combat-based quests’, in Proceedings of Foundations
of Digital Games, Intelligent Narrative Technologies Workshop, (2010).
Emmanuel Tanguy, Philip Willis, and Joanna J. Bryson, ‘Emotions as
durative dynamic state for action selection’, in Proceedings of the 20t"
International Joint Conference on Artificial Intelligence, pp. 1537-
1542, Hyderabad, (January 2007). Morgan Kaufmann.

M. Wibroe, KK Nygaard, and P.B. Andersen, ‘Games and stories’, Vir-
tual Interaction: Interaction in Virtual Inhabited 3D Worlds, 166-181,
(2001).



