
Representations for Action Selection Learning
from Real-Time Observation of Task Experts

Mark A. Wood and Joanna J. Bryson
Artificial models of natural Intelligence (AmonI)

Department of Computer Science
University of Bath, UK

{cspmaw,jjb }@cs.bath.ac.uk

Abstract

The association of perception and action is key to
learning by observation in general, and to program-
level task imitation in particular. The question is
how to structure this information such that learn-
ing is tractable for resource-bounded agents. By
introducing a combination of symbolic represen-
tation with Bayesian reasoning, we demonstrate
both theoretical and empirical improvements to a
general-purpose imitation system originally based
on a model of infant social learning. We also
show how prior task knowledge and selective at-
tention can be rigorously incorporated via loss ma-
trices and Automatic Relevance Determination re-
spectively.

1 Introduction
Program-level imitation[Byrne and Russon, 1998], or the
acquisition of behavioural structure from observation, is an
under-researched field in AI. In robot AI, much effort has
rightly been directed toward action-level imitation; the repro-
duction of movements involving a fine degree of motor con-
trol. Indeed, this highly complex and difficult task needs to be
solved by a robot before it is able to acquire structural data.
However, by using ‘intelligent’ virtual environments which
implicitly deal with low-level actions, we can gain access to a
rich class of higher-level problems.Unreal Tournament[Dig-
ital Extremes, 1999] is an example of such an environment,
and it is popular with those few looking at this problem[Thu-
rauet al., 2004; Le Hyet al., 2004]. It is also the domain of
choice for the system that underpins this paper: COIL[Wood
and Bryson, 2007].

In this paper we demonstrate how a formal Bayesian
framework can be incorporated into a complex modular learn-
ing system. Through this we widen its potential applicability
in theory, significantly improve its learning performance in
practise, and add natural extensibility to the system via tried
and tested Bayesian methodology. Our experiments also en-
able us to examine the broader issue of the combinatorial
complexity of social learning. Social learning is an important
mechanism for acquiring intelligent behaviour — arguably it
accounts for the massive accumulation of culture and artifacts
seen in humans compared to our nearest biological relatives,

the other apes. Understanding the complexity characteristics
of this task is key to both understanding human intelligence
and harnessing the approach for AI.

1.1 System Overview
COIL is an adaption to generic imitation learning of Roy’s
language learning system, CELL. CELL is one of the most
convincing examples to date of real-time interactive social
learning. It enables a robot to learn the names for various toys
using the same sorts of input as an infant. Both CELL and
COIL are detailed elsewhere[Roy, 1999; Wood and Bryson,
2007]; here we give a skeletal overview of COIL, to clarify
those parts most relevant to the extentions described later.

Raw Sensor Data

Feature Extraction

P−channels
A−channels

Co−occurence Filtering

Event Segmentation

Recurrence Filtering

Mutual Information Filtering

P−events
A−events

AP−events

M−E candidates

M−E items

Figure 1: The inputs and outputs of each stage of COIL
[Wood and Bryson, 2007].

The learning part of COIL has five constituent stages of
processing (see Figure 1). It is designed to function embed-

ded in animitator agent observing a conspecificexpertagent
executing a given task in a shared environment. The input to
the first stage consists of the incoming raw data from the im-
itator’s sensors. DuringFeature Extraction, these data are
directed into separatechannelswhich are one of two types:
Action channels receive data pertaining to the actions taken
by the expert, and Perception channels receive data pertain-
ing (but not identical) to the perceptual state of the expert.
Once in channels the data are segmented intoA- andP-events
respectively, and then further intoA- andP-subeventsaccord-
ing to a set of pre-programmed triggers; this isEvent Seg-
mentation. TheCo-Occurrence Filter then simply binds co-
occurring A- and P-events together asAP-eventsand shunts
them to a queue called STM (Short Term Memory). When-
ever a new AP-event arrives in STM, it is compared with
each of those already there in turn. TheRecurrence Filter
scans for co-occurring A- and P-subevent pairs and, if any
are found, binds them as a Motivation-Expectation orM-E
Candidateand stores them in MTM (Mid Term Memory).
Finally, theMutual Information Filter calculates a mutual
information score for each M-E Candidate using a some-
what complex algorithm not described here (see[Wood and
Bryson, 2007] for details). Those candidates whose scores
exceed a pre-determined threshold are saved in LTM (Long
Term Memory asM-E Items.

The M-E Items themselves represent observed perception-
action pairs (though note the original agent may not have had
this model[Bryson and Wood, 2005]), and can consequently
be used to create a reactive imitative behaviour. The imita-
tor’s sensors define a perception space which it will move
through as the task surroundings change. M-E Items can be
used to create maps from regions of this space onto the im-
itator’s action repertoire. In practise, the imitator searches
the perception chunks stored in LTM for those that match its
current perceptual state. If matches are found, the highest pri-
ority match is selected (ranked by mutual information score),
and then the associated action chunk is returned and executed.

1.2 System Shortcomings

Although COIL has had some previously-reported success in
performing imitation tasks, we have discovered a number of
flaws which prevent it from scaling to more difficult prob-
lems.

Representations

COIL’s primary weakness results from trying to represent
general action and perception with the same system CELL
uses for speech and vision. CELL receives continuous mi-
crophone data, later converted into discrete phonemes during
Event Segmentation. COIL receives continuous action data
which is parsed into discrete action segments. The crucial
difference is betweenthe spaces in which these discrete ob-
jects lie. We omit the details of Roy’s metric here (see[Roy,
1999, p. 106]), but intuitively both phonemes and shapes can
have infinite variation and can be mapped into a continuous
space using histograms where the notion of ‘nearness’ is rel-
atively well-defined. In contrast, the limited set of executable

actions1 required for an imitation task lie in a discrete space
where ‘nearness’ is not only hard to define but not a partic-
ularly useful concept. For example, how far isjump from
turn right , and what use would that information be any-
way? Perceptual channels are similarly unrelated since we
are not simply learning to respond to different shapes, but
are interested in different proprioceptive / physical position-
ing as well as more thoroughly categorised ‘visual’ stimuli
(e.g. identifying an objectvs. an agent). These comparisons
point toward using a more thoroughly discrete representation
for both actions and perceptions throughout COIL.

An obvious solution might appear to be to reduce the level
of abstraction at which the learning and action selection oc-
curs. For example, by descending into finer-grained mus-
cle and motor position spaces we would reclaim continuity.
There are two problems here: firstly, both of these spaces
have unusual discontinuities which lead to the problems of
inverse kinematics which ensnare traditional robotics. Sec-
ondly, the complexity inherent in the remaining imitation
(and subsequent action selection) process demands a reduced
space of more generic operators. Thus rather than learn-
ing 180 differentturn-right commands, each varying by
only one degree of turn arc, we simply learn toinitiate turn-
right , and then check for stopping criteria. Note that this
solution is more robust to uncertain motion and sensing, as-
suming the stopping or homing criteria are perceivable within
some range of degrees during the turn.

Algorithms

The performance of COIL is further affected by certain char-
acteristics inherited from the CELL algorithms. Firstly, the
Recurrence Filter is designed to search for events recurring
only within a short history of observations. This is appropri-
ate for aspects of infant learning that assume frequent rep-
etition, e.g. of word/object pairs, but task learning in gen-
eral may have arbitrarily long gaps between recurring per-
ception/action pairs. The problem with simply increasing
the size of the Recurrence Filter window is that every arriv-
ing AP-event is compared to all those already present, which
clearly results in combinatorial problems as the size of the
queue increases. The Mutual Information Filter has a simi-
lar scaling problem. It has cubic complexity in the number
of elements in MTM (which in general could grow without
bound) and exponential in the number of monitored channels
(which grows with the complexity of the task domain). Addi-
tionally, the probabilities used in the calculation of the mutual
information are frequentist (as opposed to Bayesian) approx-
imations, and are consequently very sensitive to noise caused
by small frequency counts (ie. rarely observed events). Roy
tackles this by interpolating these probabilities with priors,
but the choice of prior mass parameter required by this tech-
nique can have significant effects on the resulting probabili-
ties, particularly if many of the events in question are infre-
quent. This may well be the case for our applications, so we
desire a more robust method.

1Limited in that relatively few actions can beinitiated at any
given time.

2 Model
We therefore wish to implement a learning algorithm which
can operate within the COIL framework and minimise the po-
tential problems outlined above. Specifically, it should be:

Scalable- both in terms of memory requirements and learn-
ing complexity.

Incremental - so that all observations are used and knowl-
edge is consolidated in a natural way.

Rigorous - having output that is interpretable and justifiable
through established mathematical argument.

Robust - not prone to failure when processing unusual, un-
forseen or extreme events.

It would also be preferable for this algorithm to be suffi-
ciently general-purpose to be applied to other similar learn-
ing problems in this field. The Bayesian framework would
seem a good place to begin, as it allows each observed event
to update prior belief in an efficient and well-defined manner
[Bishop, 1995, p. 17]. However, there are many algorithms
which make use of it, so the question becomes which one to
use in order to obtain the desired posterior beliefs. We chose
a multi-layer perceptron (MLP) architecture which, given a
certain set of constraints, provides Bayesian posterior proba-
bilities as its outputs. We describe this specific configuration
in the next section.

2.1 Network Architecture

The parts of COIL most prone to the kinds of problems de-
scribed above are the Recurrence and Mutual Information fil-
ters. To replace these, we therefore require that the new algo-
rithm receive perception-action data from the Co-occurrence
filter and output a behavioural map. In MLP terms, this map
looks like a classifier network, which receives perceptual data
and assigns it to the appropriate action class. To allow an
MLP to learn such a classification, we must translate the ob-
served perception-action pairs into an appropriate set of train-
ing examples. Each example should consist of a set of input
variables and a set of target variables. In this case, the input
variables should correspond to the observed perceptual state
of the expert, and the target variables should correspond to
the observed action. The question is, what encoding to use
for these variable sets?

As explained above, we are assuming for now
that perceptual categories (such asitem left and
no item visible) have no implicit relationship to each
other. They do not lie in a metric space and so cannot be
represented by ordinal variables. We therefore use a purely
categorical1-of-c encoding for the input[Bishop, 1995,
p. 300]. Suppose a given Perception channel hasn possible
symbolic states. Then symboli can be represented by a
vector ofn bits where only theith bit is set (1 <= i <= n).
If there arem Perception channels then the concatenation of
m such vectors produces the complete required binary input
vector of lengthn1 + ... + nm. If there arek observable
actions, then this is equivalent to a classification problem
with k target classes, and we can create one output node for
each class. We have already stated that it is desirable for
these outputs to have a Bayesian interpretation as posterior

probabilities of action class membership for a given per-
ceptual state. This is achievable using a softmax activation
function for the network output units[Bridle, 1990] and
minimising a cross-entropy error function for the network
weights[Bishop, 1995, p. 237]. After some empirical testing,
we chose to include three hidden units in the network,
although the results were not particularly sensitive to this
choice. We are currently looking into Bayesian model
selection techniques for selecting the number of hidden units
(see Section 4). Given the above node structure, the network
we used was fully connected with a simple feedforward
structure, as shown in Figure 2.

binary inputs grouped by Perception channel

biases

A1 A2 A3 A4 A5

outputs correspond to action class probabilities

Figure 2: Diagram of MLP architecture. The binary input
vector is a concatenation of 1-of-c encoded symbols for each
Perception channel. There are three hidden units with soft-
max activation to the outputs, which consequently correspond
to posterior probabilities of action class membership. Arrow
shows direction of forward propagation; biases are shown ex-
plicitly for clarity.

The network training scheme uses Bayesian regularisa-
tion with separate hyperparameters for each of four weight
groups: first-layer weights, first-layer biases, second-layer
weights and second-layer biases[Bishop, 1995, p. 408].
Training was by back-propagation for up to 100 cycles of
scaled conjugate gradient search (fewer if convergence oc-
curred beforehand), followed by re-estimation of the hy-
perparameters using theevidence approximationtechnique
[MacKay, 1992b]. This cycle of re-estimation and re-training
was carried out 8 times. The test data for the network con-
sisted of querying all possible combinations of perceptual
state, to evaluate the most probable action assigned to that
state by the classifier. Finally, these posterior probabilities
were marginalised according to the observed data[MacKay,
1992a]. Although this last step does not affect the most prob-
able action class, it can have significant effects if loss matrices
are added (see Section 3.3 below).

Empirical evidence showing the increasedlearningperfor-
mance of the new algorithm can be found in the next section.
Before we examine this however, we review the theoretical
criteria set out at the beginning of this section and ask if they
are satisfied.
Scalable- as far as learning complexity is concerned, net-
work training time increases only linearly with the number

of observed events, as compared to the combinatorics of the
original algorithms (see Section 1.2). Also, the MLP is a
function which requires storage equal to the number of net-
work weights as opposed to a potentially boundless number
of stored M-E Items.

Incremental - due to this increase in efficiency and the be-
lief accumulation property of the Bayesian framework, every
observation can be taken into account and consolidated with
prior knowledge.

Rigorous - the fact that we can interpret the MLP outputs as
posterior probabilities is a well-proven property of this type
of network and totally independent of the domain in which
we’re working.

Robust - the parametric re-estimation carried out after each
network training cycle serves to minimise any problems
caused by local minima relating to, say, weight initialisation.

3 Experiments

To evaluate our new model we tested it against the same
data collected for the original COIL experiments. These data
were gathered inUnreal Tournament(UT), a commercially
released, multi-player ‘First Person Shooter’ (game)[Digi-
tal Extremes, 1999]. As the term suggests, the user has an
agent’s-eye view of the game and direct, real-time control
of an avatar’s actions. UT also supports remote control of
agents by sending commands to the game server over a net-
work. This provides a framework for allowing external pro-
grams to direct an agent’s actions. As such, UT provides a
viable platform for testing strong AI, since humans and AI
can compete and interact in a real-time, spatially situated do-
main. The game server sends two categories of sensor data
back to the client. The first is synchronous: at regular inter-
vals the client is informed of the agent’s status (e.g. health,
ammo, current weapon, etc). The second is asynchronous:
for example whenever a wall is bumped, a footstep is heard
or damage is taken.

These data when viewed as a whole are a highly dynamic,
high-dimensional mixture of categorical and continuous vari-
ables, akin to sensory data acquired in the real world. Other
similarities include physics simulation, such as collisions,
gravity, and sound and light transmission. AI agents’ (bots’)
sensor data are incomplete in the sense that only a reduced
subset of the game variables are observable; the bots have
limited virtual sensors. For example, the imitator cannot
know the health state of the expert, although this may well
affect the expert’s choices. The environment contains many
independent features, each of which could be represented in
a number ways. Thus the problem of assimilating the be-
haviour of another agent via observation is far from simple.
The first three stages of COIL each serve to reduce the com-
plexity of this problem (see Section 1.1) so that it arrives at
the inputs of our new algorithm in a tractable state.

In short, UT agents deal with real-world temporally-
bounded cognitive constraints, not least the combinatorial
complexity of learning, which makes them ideal test subjects
for our research.

3.1 Task 1
The first task involved collectinghealth vials, one of many
so-called ‘pickups’ available in UT, from various locations
within a game map. The data was originally received and
processed by a COIL system embedded in an AI-controlled
bot, programmed to observe from within the environment a
human-controlled bot carrying out the task. We used three
different ‘tactics’ during our demonstrations:

CW Tend to turn clockwise if no vials are visible.

ACW Tend to turn anticlockwise.

Mix No fixed tendency.

Ten trials for each tactic were carried out, for a total of 30 tri-
als each lasting approximately 60 seconds. During the origi-
nal experimental runs, the data arriving in channels (ie. post
Feature Extraction) were saved prior to further processing.
This allowed us to compare the new learning algorithms on
the same data sets. The MLP replaces only the recurrence
and mutual information filtering stages of COIL, with the first
three stages remaining unchanged. For further performance
comparison, we also fed this data into a decision tree algo-
rithm, C4.5[Quinlan, 1992].

Our performance metric derives from our representation of
behaviour as a mapping from discrete regions of perceptual
space to discrete actions. We defined the behaviour on which
we based our demonstrations as the ‘ideal’ map from percep-
tion to action for this task. The proportion of the learned be-
haviour which matches the ideal allowed us to assign a ‘per-
centage correct behaviour’ score to each trial. The results
comparing the three techniques are shown in Figure 3(a). As
can be seen from the figure, the MLP (grey bars) generated
universally perfect behaviour for this task, correcting all er-
rors made by COIL’s native algorithms (black bars). Interest-
ingly though, C4.5 (white bars) also performs a perfect clas-
sification

3.2 Task 2
The second task required the expert to locate and destroy en-
emy bots in an environment which also contained an equal
number of friendly bots. Each trial lasted as long as it took
for this task to be completed; typically around 60 seconds.
Tactics CW, ACW and Mix were used analogously to Task 1,
again with ten trials each for a total of 30. All algorithms and
training methods remained the same for this task as for the
previous one. Results are summarised in Figure 3(b). The
MLP (left-hand grey bar in each group) provides a small but
not signifcant (t-test,p = 0.05) increase in performance
from both COIL (black bars) and C4.5 (white bar), which for
this task performs no better than COIL. Upon inspection of
the data it is clear that for a majority of the trials, the asso-
ciations that would be necessary to form a fully correct be-
haviour are never observed. Specifically, most of the mis-
classifications are made for turning toward an enemy; in the
absence of such associations the imitator tended to adopt the
dominant turning direction observed and consequently err in
either theenemy left or enemy right state. The other
common mistake was to fire before the enemy was centred
in sights; both were made less by the network than the other

(a) Task 1 (b) Task 2 (c) ARD

Figure 3: Comparative performance of the different learning algorithms over a variety of tasks. The black bars correspond to
the original COIL algorithms, the white bars correspond to C4.5 and the grey bars correspond to the new MLP classifications.
In the second study, the right-hand grey bar corresponds to the system moderated by a loss matrix (see text for details). The
third study shows the automatically determined relative importance of two Perception channel input sets. Error bars show the
standard error of the means.

algorithms. Performance is further improved, this time sig-
nificantly (t-test,p = 0.05), by introducing a loss matrix to
represent prior task knowledge (right-hand grey bars in each
group); one of the extentions we go on to talk about in the
next section.

3.3 Bayesian Extentions
As discussed in Section 2, the probabilistic interpretation of
results possible from the network model is highly desirable.
This also allows other Bayesian techniques to be applied to
the network and its outputs. We now discuss two such tech-
niques and show preliminary results.

Loss Matrices
In general decision theoretic terms, aloss matrixdescribes
the relative penalties associated with misclassifying a given
input [Bishop, 1995, p.27]. In this case we can describe the
matrix as having elementsLkj representing the loss resulting
from assigning an actionAj to a given perceptual state when
in fact Ak should be assigned. Decisions are then made by
minimising therisk, or equivalently by using the following
discriminant to classify a given perceptual statex:

c∑

k=1

LkjP (Ak|x) <

c∑

k=1

LkiP (Ak|x) ∀ i 6= j (1)

whereP (Ak|x) can be obtained from the (marginalised) net-
work output probabilities. To demonstrate this we applied a
simple loss matrix to the networks generated during Task 2:

(Lkj) =

(0 5 5
1 0 1
1 1 0

)
(2)

whereA1 is the fire action,A2 is turn left andA3 is
turn right . This matrix specifies that ‘accidentally’ firing
instead of correctly turning should incur five times greater

a penalty than any other misclassification2. Informally, one
would expect this to be equivalent to giving the imitator the
instruction “only shoot if you’re sure”, prior to acting. The
results of applying this matrix to the Task 2 network outputs
are shown in Figure 3(b) (right-hand grey bars in each group).
The improvement, as expected, is due to fewer cases of firing
before the enemy is in position. Although this is a relatively
simple example of the application of this technique, it does
demonstrate the ease at which prior knowledge can be for-
mally incorporated into the model, and how it could be sys-
tematically altered to test the effect on output behaviour.

Selective Attention
It is likely that for a given task, only a small subset of the
full available perceptual state will be required for good per-
formance. So far in this paper, this subset has been chosen by
hand, but the MLP model can enable us to make this selec-
tion automatically, within a sound Bayesian framework. This
Automatic Relevance Determination[Neal, 1996, p. 15] is
achieved by using a different hyperprior. Instead of grouping
the weights such that there are four independent regularisa-
tion hyperparameters, the weights associated witheach input
have their own hyperparameter. These coefficients vary in
proportion to theinverseposterior variance of the weight dis-
tribution for that input. Thus if a given input has a high coef-
ficient value, the weight distribution for that input has a low
variance and the input has little bearing on the ultimate classi-
fication: the input haslow relevance. Using a similar training
and re-estimation scheme as described earlier, these hyperpa-
rameters can be used to determine the relative relevance of
the different network inputs, which in this case correspond to
different aspects of the environment. Thus we have a method
for automatic attention selection within a broader set of chan-

2Note a loss matrix with zeros on the main diagonal and ones ev-
erywhere else describes a discriminant equivalent to simply choos-
ing the class with the greatest posterior probability.

nels.
To test this theory, we added a Perception channel to Task 1

which identified theabsolute directionthe imitator was fac-
ing, represented by one of four ‘compass’ symbols. One
would expect this set of inputs to have lower relevance than
the existing channel relating to the relative bearing of the
vials. We carried out a further ten trials under much the same
conditions as Task 1. The results are summarised in Figure
3(c). As expected, the coefficient values for the inputs associ-
ated with the new channel are significantly higher on average
than the inputs associated with the original channel. The ex-
ception to this is the fourth Bearing input which (bearing in
mind the 1-of-c encoding) was fully determined by the state
of the first three inputs. Given these inputs converged to high
relevance, the fourth was correctly deemed of very low rele-
vance. In principle, this technique could be used to prune per-
ception space down to make local task learning more accurate
and efficient. To allow this, some kind of ‘relevance thresh-
old’ would have to be chosen, which may well vary from task
to task. The method for making such a choice remains an
open question.

4 Conclusion
We have presented a new and significantly improved version
of the COIL system for program-level imitation. In doing
this, we have shown that taking advantage of Bayesian rea-
soning, along with the large body of systems-independent re-
search that comes with it, can allow for improvement both
in the theoretical bounds of a system and its empirical per-
formance. This may require some representational transfor-
mation, but in return unlocks an arsenal of well-established
techniques that can be brought to bear on practical problems
in novel ways. Also, the techniques themselves may suggest
new avenues of research, and therefore provide the system
with natural extensibility.

The fundamental issue of interest to us, motivating and
examined in both this paper and its parent, is the combina-
torial complexity of social learning. In this case study, we
have compared COIL’s perception-action association storage
method with that of learning a function from perception to
action. The former is both more memory-intensive and more
search-intensive due to COIL’s native representations and al-
gorithms, but is in fact an arbitrarily flexible specification for
behaviour. In practise for simple tasks, and in theory for
more complex tasks, the functional approach is more effi-
cient. However, it is likely that there will come a point where
the task domain becomes too dynamic and hierarchical for
behaviour to be adequately specified by a single MLP, or in-
deed by any ‘stock’ function.

Our latest work suggests two possible alternative solutions:
firstly a hierarchical system of functions, monitoring local
task domains at the lower level and arbitrating between task
domains at the higher. This would still require an external
process to exchange information between functions. Sec-
ondly, we could apply the hierarchical model to an improved
association storage method. By using perceptual prioritisa-
tion and action concatenation we can carefully control the
trade-off between performance and complexity while at the

same time capitalising on the flexibility of this approach.

Acknowledgements
The research presented is partially funded by an EPSRC DTA
Studentship, administered by the University of Bath Depart-
ment of Computer Science.

References
[Bishop, 1995] Christopher M. Bishop.Neural Networks for

Pattern Recognition. Oxford University Press, 1995.

[Bridle, 1990] J. S. Bridle. Probabilistic interpretation of
feedforward classification network outputs, with relation-
ships to statistical pattern recognition.Neurocomputing:
Algorithms, Architectures and Applications, pages 227–
236, 1990.

[Bryson and Wood, 2005] Joanna J. Bryson and Mark A.
Wood. Learning discretely: Behaviour and organisation in
social learning. In Yiannis Demiris, editor,Third Interna-
tional Symposium on Imitation in Animals and Artifacts,
pages 30–37, Hatfield, UK, April 2005. The Society for
the Study of Artificial Intelligence and the Simulation of
Behaviour.

[Byrne and Russon, 1998] Richard W. Byrne and Anne E.
Russon. Learning by imitation: a hierarchical approach.
Behavioral and Brain Sciences, 16(3), 1998.

[Digital Extremes, 1999] Digital Extremes.Unreal Tourna-
ment, 1999. Epic Games, Inc.

[Le Hy et al., 2004] Ronan Le Hy, Anthony Arrigoni, Pierre
Bessìere, and Olivier Lebeltel. Teaching bayesian be-
haviours to video game characters.Robotics and Au-
tonomous Systems, 47:177–185, 2004.

[MacKay, 1992a] David J. C. MacKay. The evidence frame-
work applied to classification networks.Neural Computa-
tion, 4(5):720–736, 1992.

[MacKay, 1992b] David J. C. MacKay. A practical bayesian
framework for backpropagation networks.Neural Compu-
tation, 4(3):448–472, 1992.

[Neal, 1996] Radford M. Neal.Bayesian Learning for Neu-
ral Networks. Springer, August 1996.

[Quinlan, 1992] J. Ross Quinlan.C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, October 1992.

[Roy, 1999] Deb Kumar Roy. Learning from Sights and
Sounds: A Computational Model. PhD thesis, MIT, Media
Laboratory, September 1999.

[Thurauet al., 2004] Christian Thurau, Christian Bauck-
hage, and Gerhard Sagerer. Learning human-like move-
ment behavior for computer games. InProceedings of the
8th International Conference on the Simulation of Adap-
tive Behavior (SAB’04), 2004.

[Wood and Bryson, 2007] Mark A. Wood and Joanna J.
Bryson. Skill acquisition through program-level imitation
in a real-time domain.IEEE Transaction on Systems, Man
and Cybernetics, Part B: Cybernetics, 2007. In press.

