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Abstract

This paper describes a research program designed to use
agent models to understand how primates incorporate
new, learned behavior safely into their established, re-
liable behavior repertoires. We suggest that some of
the findings in the primate learning literature that we
currently find surprising may in fact reflect evolved so-
lutions to the problem of safe learning in intelligent
agents. We sketch an approach to trying to model this
learning, with the expectation that our experience will
also lead to insights into idioms and strategies for in-
corporating safe learning into artificial agents.

Introduction
Many Artificial Intelligence (AI) researchers have made the
mistake of thinking that the main problems of learning are
problems of quantity, such as providing adequate capacity
or sufficiently rapid recall. One well-known exception is the
concept of overfitting, that the function that most accurately
records learned perception/behavior pairings is not necessar-
ily the one that best predicts good behavior from novel per-
ception (Hertz, Krogh, & Palmer, 1991, p. 147). But there is
another sense in which more is not necessarily better. Agent
intelligence can be complex and intricate, an island of local
optimality surrounded by oceans of ineffective and even haz-
ardous behavior (Schneider, 1997). If an agent has unlimited
learning, then it can learn a version of behavior control that
moves it off that island and into deep water. The challenge
of safe learning is allowing an agent to adapt only enough to
explore the safe territory.

One popular strategy for safe ‘adaptive’ behavior1 in ar-
tificial agents isreactive planning. An agent using reac-
tive planning chooses its next action through a look-up in-
dexed on the agent’s perception of the current environment.
This sort of planning has been popularized because it is ro-
bust and efficient, allowing rapid, opportunistic response to
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1I use ‘adaptive’ (with scare quotes) in the sense ofnouvelle
AI: “behaviors and underlying mechanisms that allow animals and,
potentially, robots to adapt and survive in uncertain environments
(Meyer & Wilson, 1991, p.ix).” Elsewhere in this paper I use the
term (without scare quotes) in its Darwinian sense. I apologize for
this confusion.

complex, dynamic environments (Brooks, 1991; Georgeff &
Lansky, 1987). It is ‘adaptive’ in that novel sequences of
actions can be generated as appropriate. However, reactive
planning does not involve long-term changes in the animal’s
behavior repertoire: in the same environmental and behav-
ioral context, the animal will select the same action regard-
less of its previous outcome. Consequently, agents that rely
completely on reactive planning for their adaptation are not
said to be able to learn.

If we consider instead natural agents, we find that some
amount of learning is ubiquitous. But we also find persistent
failures to learn in even the most adaptable species, such as
the primates. These failures cannot always be explained in
terms of failures of perception, nor as a lack of capacity for
the complexity of the learning task. Attempting to explain
these failings has lead us to the hypothesis that failing to
learn in some contexts may actually be an adaptive strategy
(in the Darwinian sense) for protecting the overall quality of
an agent’s intelligence.

The AI research described in this paper reflects a new pro-
gram funded by an exploratory grant under the NSF Biolog-
ical Information Technology & Systems (BITS) initiative.
We are attempting to gain new insights into safely incorpo-
rating learned behavior into established agent intelligence by
modeling the learning of non-human primates. At the same
time, we expect both the modeling itself and insights into the
nature of the problem gleaned from the safe-learning agent
community will help us to understand some of the unusual
learning behavior witnessed in primates.

The following section of this paper discusses learning and
its limits in nature, paying particular attention to primate
learning. The next section describes from a more compu-
tational perspective why constraints can be advantageous,
and how modular intelligence might be used to provide these
limitations. We then describe our proposed course of re-
search, and finally we discuss the relevance of our work to
date to the more general questions of safe learning in agents.

Why Study Primates?
Introduction

Many researchers have a pre-Darwinian fallacy in their
thinking about learning, particularly in nature. The assump-
tion is that learning is ideally unconstrained, unbiased and



without limits, and that if evolution has not yet achieved this,
it is well on its way, as witnessed by the incredible adaptabil-
ity of humans. What makes this a pre-Darwinian fallacy is
that it assumes that humans are the most evolved species on
the planet. In fact, humanity is just one out of very many
species all descended from the same incident of life and all
species have been subject to the pressures of selectivity for
the same amount of time. If the extent of the human ability
to learn is special (which seems to be true), then there is a
significant question as to why only one species learns to that
extent.

In this section, we review evidence that learning in nature
is generally restricted and specialized to particular tasks. We
then discuss why primates may have come to be exception-
ally adaptable, and therefore particularly interesting as mod-
els of safe learning. We conclude by reviewing some of the
specific learning results we plan to model.

Limits on Learning in Nature
Earlier this century, behaviorists (a group of psychologists
and animal researchers who concentrated on laboratory ex-
periments), proposed that animals learn only through a gen-
eral process of being able to create associations.

The [behaviorists’] position is that all learning is based
on the capacity to form associations; there are general
laws of learning that apply equally to all domains of
stimuli, responses, and reinforcers; the more frequent
the pairings between the elements to be associated, the
stronger the associative strength; the more proximate
the members of an association pair, the more likely the
learning. (Gallistelet al., 1991)

Learning by association (conditioning) does appear to be
a general learning mechanism with parameters that hold
across species, presumably indicating a common underly-
ing mechanism. However, behaviorist research itself even-
tually demonstrated that animalscannot learn to associate
any arbitrary stimulus with any arbitrary response. Pigeons
can learn to peck for food, but cannot learn to peck to avoid a
shock. Conversely, they can learn to flap their wings to avoid
a shock, but not for food (Hineline & Rachlin, 1969). In re-
lated experiments, rats presented with “bad” water learned
different cues for its badness depending on the consequences
of drinking it. If drinking lead to shocks, they learned vi-
sual or auditory cues and if drinking lead to poisoning they
learned taste or smell cues (Garcia & Koelling, 1966).

These examples demonstrate highly specific, constrained
and ecologically-relevant learning mechanisms. For exam-
ple, the content of the associations rats are able to make bi-
ases their learning toward information likely to be relevant:
poison is often indicated by smell or taste, while acute pain
is often the consequence of something that can be seen or
heard. Such results were originally interpreted as constraints
placed on general learning to avoid dangerous associations,
but research has since indicated the inverse. Specialized
systems exist to form important associations (Roper, 1983).
For example, poison avoidance in rats is handled by a spe-
cific one-shot-learning mechanism in the olfactory section
of their amygdala.

The current ethological hypothesis is that learning by
an individual organism serves as a last resort for evolution
(Roper, 1983; Gallistelet al., 1991; Marler, 1991). Interest-
ing explorations and demonstrations of this hypothesis (in-
cluding those using artificial models) can be found in the lit-
erature examining the Baldwin effect (Baldwin, 1896; Tur-
ney, 1996; Belew & Mitchell, 1996). The Baldwin effect
indicates that individual adaptability can sustain useful ge-
netic variations before they are fully and reliably encoded.
Nevertheless, although individual learning may be sufficient
to sustain such a transitional genetic trait, there is still se-
lective pressure for full genetic coding to replace individual
learning. This is because genetic coding provides a more
reliable guarantee thatevery individual of the species will
have the advantageous feature. In general, learning only
persists when a behavior cannot be fully predetermined, be-
cause the competence involved requires flexibility on a less
than evolutionary time scale2 (Gallistelet al., 1991). Exam-
ples of such competencies include landmark navigation (e.g.
in bees) and calibrating perceptual systems (e.g. in barn owl
chicks calibrating their hearing to their vision (Brainard &
Knudsen, 1998)). Because the details of the owl’s head-
size or the bee’s landmark location are dependent on un-
predictable environmental factors, this knowledge must be
learned rather than inherited.

If learning is typically restricted in nature, then why are
some species, such as many primates, relatively capable?
One possibility is that some ancestral primates came to in-
habit a niche in which a greater capacity for learningwas
advantageous. The selective pressure favoring greater learn-
ing capacity may not have concerned standard dangers such
as avoiding predators or finding food. Some genetic char-
acteristics are selected for primarily along sexual grounds,
and may otherwise be actively counter-adaptive (Zahavi &
Zahavi, 1997). Byrne & Whiten (1988) have suggested that
primate intelligence is driven by adaptation to complex so-
cial constraints (see also Cosmides & Tooby, 1992; Whiten
& Byrne, 1997). Primates show varying degrees of sophisti-
cation for deceiving social authorities and for detecting such
deception — skills that may have required exceptional intel-
lectual resources including sophisticated learning.

If the enhanced extent of primate learning is a conse-
quence of sexual selection, then the fact primates exhibit a
greater capacity for learning than most other animals does
not contradict our hypothesis that learning is inherently dan-
gerous. In some species, such as the Giant Irish Deer and
some variants of birds of paradise, over-development of sex-
ually selected traits actively contrary to ordinary fitness may
have contributed to the species extinction (Fisher, 1930).
If primate learning is special in its extent, and learning is
generally a dangerous thing that must be managed, then
primate intelligence may well incorporate especially use-
ful attributes for making that learning safer. Thus primate
learning is particularly relevant engineering safe learning for

2Though note that Hinton & Nowlan (1987) have demonstrated
that there is no selective pressure to genetically encode learning
which is completely reliable. An example here might be retinotopic
mapping (von der Malsburg & Singer, 1988).



agents.

Specific Research to be Modeled
We now describe some of the tasks we have selected as good
candidates for modeling. In each of these tasks, a subject
is presented with the task of retrieving a desirable object.
The mechanism for retrieval is not straight-forward for the
subject — to be consistently successful they must discover
and learn a new strategy. Each of these examples shows that
the animals seem to have the capacity to learn the task given
a particular context, but will not in some other contexts. The
experiments presented below are described more thoroughly
by Hauser (1999); further references can be found in that
article.

The Object-Retrieval Task In this task (originally de-
signed by Diamond (1990)) an agent is exposed to a clear
box with food inside of it and only one open side. The ori-
entation of the open side is varied from trial to trial. Human
infants under the age of approximately 7 months and adult
primates of at least one species (cotton-top tamarins) will re-
peatedly reach straight for the food, despite repeated failure
due to contact with the transparent face of the box. More
mature children and adult rhesus macaques (another primate
species) succeed in this task by finding the open face of the
box. For a short intermediate period of human development
children learn the task if they are first exposed to an opaque
box, and then transferred to the transparent one. This strat-
egy also helps the adult Tamarins.

These experiments demonstrate:

• that some tasks are easier to learn than others (e.g. finding
openings in opaque vs. clear boxes),

• that knowledge about some tasks can be relevant to learn-
ing others (e.g. finding an opening in a clear box after the
skill has been learned with opaque ones), and

• that learning capacities can vary by both age and by
species.

The task is interesting because it shows that learning is
divided into at least two sub-problems: learning a new skill,
and learning when to apply it. In this case, the high salience
of the visible reward seems to block the exploratory behavior
thatmightfind a better solution, but doesnotblock the adop-
tion of a relatively certain solution that had been learned in
a different framework. Thus modeling the object-retrieval
task requires modeling the interaction between perceptu-
ally driven motivation and the operation of control plans,
as well as modeling the operations of a behavior for con-
trolling learning, one that provides for exploration and for
incorporating discoveries into the behavior repertoire.

The Cloth-Pulling Task In this task, tamarins learn to dis-
criminate relevant cues as to which of two pieces of cloth
can be used to retrieve a piece of food. The primary relevant
cue is whether the food is on a piece of cloth within grasp of
the tamarin, but initially the tamarins don’t know this. They
are provided with many possible distracting features for de-
termining which cloth to pull, such as the color, texture and
shape of the cloth. Tamarins may be fooled into attending to

a distractor such as color if it reliably covaries with the right
answer, but quickly learn to attend to the food’s location on a
contiguous piece of cloth in normal circumstances. Yet even
after the tamarins successfully show competence at selecting
the correct cloth, they can still be fooled into choosing the
wrong one. This is done by placing a large but inaccessible
reward in one box in contrast to a small but accessible reward
in the other. The tamarins are literally tempted into doing the
wrong thing — they will pull the cloth associated with the
larger reward even though in other circumstances they show
knowledge that rewards in such configurations are unobtain-
able. Consequently, the cloth-pulling task provides further
information for the motivation-integration model described
as needed for the object-retrieval task.

The Invisible-Displacement Task When a piece of food
is launched down an opaque, S-shaped tube, Tamarins in-
correctly expect it to land directly beneath the release point
if the test apparatus is standing upright. In contrast, if the
same tube is set up along the horizontal plane, tamarins gen-
erate the correct expectations about the invisibly displaced
target location. In the vertical case, any learning seems to
be blocked by a strong prior expectation — either genetic
or experiential — for the effect of gravity. Apparently this
bias is so strong that, unlike the comparable situation in the
object-retrieval task, in this case the tamarins are unable to
use the knowledge from the horizontal condition when they
return to attempting the vertical one.

Similar results have been shown in very different research
contexts. For example, free-ranging rhesus macaques search
below a table rather than on it when they see fruit drop from
above the table but are prevented from seeing where it lands.
Further, for both experimental conditions, looking-time ex-
periments indicate that primates seem toexpectthe right
thing to happen (Santos & Hauser, 2002). For example, if
a macaque is constrained from searching but shown both the
conditionandthe result (e.g. first witness the food drop as in
the earlier experiment, then be shown where it landed), they
look longer (demonstrating surprise) if the food is on the
ground (where they would search) than if it is on the table.
Thus at some level the macaques seem to know what should
actually happen, yet they do not appear to have access to
this information when planning their own search. Similar
results, both for gravitational biases and for contradictions
between action and looking time, have been found in human
development (e.g. Hood, Carey, & Prasada, 2000).

It is this last task, invisible-displacement, that we have
chosen to model first. Like the object-retrieval task, it pro-
vides a test of when behavior is integrated as well as how it
is learned. In the following sections we describe briefly how
we intend to model these tasks using specialized, modular
learning, and how these modular specializations can in turn
be unified into coherent behavior for a single agent.

Safety, Specialization and Modularity in AI
In the previous section, we described evidence from nature
that learning is not unequivocally a good thing. We showed
that natural systems tend to limit learning, favoring associ-
ations that are likely to be useful, and providing specialized



representations to facilitate the learning of things that can-
not be encoded genetically. In this section, we will consider
the problems and solutions of learning from a more compu-
tational perspective.

Without some sort of constraint (also known asbiasor fo-
cus) reliable learning and even action selection are impossi-
ble (Wolpert, 1996; Culberson, 1998; Chapman, 1987). This
is because the attempt to learn a useful behavior is a form of
search, the central problem of agent intelligence (Russell &
Norvig, 1995). An agent must be able to find a way to be-
have that reliably increases the probability of its goals being
met (Albus, 1991). This search includes finding ways to act,
finding appropriate situations in which to act, and finding
the correct information to attend to for determining both sit-
uation and action.

Unfortunately, the problem of search is combinatorially
explosive, and thus cannot be solved optimally by an agent
with limited time or memory (Chapman, 1987; Gigerenzer
& Todd, 1999). Consequently, the intelligence of an agent
is dependent on what knowledge and skills can be provided
to it at its inception. The less search an agent has to perform
itself, the more likely it is to succeed. For an animal, this in-
formation is provided either genetically or, for a few species,
culturally (that is, from other agents.) In an artificial agent,
this information is generally provided by the programmer,
though here too it may one day be supplemented by social
learning (see e.g. Wei & Sen, 1996; Schaal, 1999).

Further, as argued in the introduction, safety and relia-
bility issues for learned behavior are an inescapable conse-
quence of learned behavior’s novelty for the agent. In ar-
tificial agents, reliable behavior is guaranteed by long pro-
cesses of verification, whether done formally or by experi-
ment (Gordon, 2000; Bryson, Lowe, & Stein, 2000). The
only way novel changes in behavior introduced by individ-
ual learning can be guaranteed by these methods is if every
possible (or at least likely) ‘new’ behavior the agent might
acquire has also been subject to these verifications. Such a
case is most plausible if variation is constrained into a lim-
ited range.

One mechanism for providing constraint or bias in an ar-
tificial system is to provide specialized representations that
support a particular learning strategy or input space. An-
other is to use a modular decomposition for the system, with
each module designed to focus its attention to a particular
sort of problem, perception or input. These strategies have
been unified in Behavior-Oriented Design (BOD) (Bryson &
Stein, 2001b; Bryson, 2001). BOD is the approach we are
using as a starting point for our models.

Behavior Oriented Design (BOD)

Behavior-Oriented Design is a development methodology
for creating modular intelligence for complete, complex
agents — that is, for self-contained agents with multiple,
possibly conflicting goals and multiple, possibly mutually
exclusive, means for achieving those goals. To date BOD
has been applied to the problem of developing intelligence
for VR characters, mobile robots, and artificial life simula-
tions.

a1

££?>=<89:;b1

BB

// a2

ÃÃB
BB

BB
BB

B

eye

<<zzzzzzzz
//

""DDDDDDDD

¼¼2
22

22
22

22
22

22
22

?>=<89:;b2 // a3 //º¹ ¸·³´ µ¶AS // a3

""EE
EE

EE
EE

?>=<89:;b3 // a4

>>||||||||
hand

?>=<89:;b4 // a5 // a5

<<yyyyyyyy

Figure 1: The architecture of a BOD agent.Behaviors
(b1 . . .) generateactions(a1 . . .) based on their own percep-
tion (derived fromsensing, the eye icon). Actions which af-
fect state external to their behavior (e.g.expressed actions,
the hand icon), may be subject to arbitration byaction se-
lection (AS) if they are mutually exclusive (e.g. sitting and
walking). In this diagram, three actions 1, 3 and 5 are tak-
ing place concurrently, while 2 and 4 have been inhibited
by action selection. Learning takes placewithin behaviors
supported by specialized representations. (Bryson & Stein,
2001c)

BOD exploits Object-Oriented Design (OOD) (e.g Par-
nas, Clements, & Weiss, 1985; Coad, North, & May-
field, 1997) to improve the power and development ease of
Behavior-Based AI (e.g. Brooks, 1991; Arkin, 1998). Con-
temporary OOD theory puts representations at the center of
software modular decomposition, and BOD does the same
for AI (Bryson & Stein, 2001b; Bryson, 2000b). In BOD,
all of the agent’s actions are performed by behavior mod-
ules. A behavior module is responsible for:

• the generation of a set of actions,

• any perception necessary for this set of actions, and

• any memory necessary for any learning required to sup-
port these perception or actions.

Memory is the permanent variable state which changes
when the agent learns something. Under BOD, its amount
and the structure of its representation is specialized to task.
For example, if we were building a grasping robot using
BOD, one behavior would contain state representing visual
attention, which would change regularly and rapidly, while
another might hold parameters for controlling the robots arm
motors, which might be learned only once, or change only
slowly as the mechanisms in the robot’s arm wear. If the
robot also needs to navigate, another behavior might hold
a learned map of its environment, and a set of associations
between locations and their probable contents.

Modularity and specialized learning simplify the problem
of design because they reduce it to a set of simpler sub-
problems. However, modularity also generates a new set of
problems. As with most behavior-based AI, BOD allows all



of its modules to operate in parallel. It is therefore possible
that more than one module might recommend an action at
the same time. Further, those actions might be contradictory.
For example, with the navigating and grasping robot above,
the robot’s grasping module may want to hold the robot still
while it executes a grasp, while its navigation module wants
it to move and explore a new region of its environment.

To arbitrate between competing behaviors, BOD uses
a special module containing explicit, hierarchically-
represented reactive plans. BOD differs from other archi-
tectures combining reactive plans and behavior-based AI
(e.g. Georgeff & Lansky, 1987; Malcolm & Smithers, 1990;
Bonassoet al., 1997; Konolige & Myers, 1998) first by
maintaining most of the autonomy for the behavior modules,
which play a significant role in action selection, and second,
by emphasizing the role of specialized learning by situating
all learning within the behavior modules with purpose-built
representations (see Figure 1).

Adapting BOD to Primate Learning
We expect that BOD will have to be modified in order to
support modeling of the primate learning described above.
BOD is intended primarily to support software engineering,
and to create efficient, reliable artificial agents. As it cur-
rently stands, BOD does not allow for either the addition
of new behaviors (and representations) during the “lifetime”
of the agent, nor for a change in prioritization between be-
haviors such as seems apparent in the primate experiments
described above. However, we do expect the changes to be
relatively minor. For example, the module containing the
reactive plans could be made more like the other behavior
modules, incorporating learning routines to change the pri-
oritization and contextual criteria that determine when a be-
havior becomes applied.

Further, the sorts of learning performed by the monkeys
are not radical departures from their existing behavior reper-
toire. The monkeys do not start manipulating objects with
their tails or using language or telekinesis. Rather, they op-
erate off a set of primitives already existing with relatively
minor modifications. Thus a new module might be learned
by cloning a copy of an existing one when it is determined
that different parameter sets are useful in different contexts
(c.f. Bryson & Stein, 2001c; Demiris, 2001).

Research Program
We have now described the primate research we intend to
model (e.g. the invisible-displacement task), the AI method-
ology we have adopted (BOD) and some of the adaptations
we expect to make to it. In this section we describe our
particular research focus, our criteria of success, and the ex-
pected benefits of our research.

Debugging Monkeys
One of the standard approaches to understanding the under-
lying mechanism producing a behavior is to look for the lim-
its of that behavior, in other words at the places it fails and
the places where it begins to work. The primate learning ex-
amples we gave above are interesting precisely because the

tamarins can perform them correctlyonly in certain circum-
stances. We are particularly interested then in the circum-
stances when the tamarinfails to perform a learning task,
given that we know that the fundamental task itself is within
the animal’s capacity.

There are two reasons an agent might apply an inappro-
priate behavior rather than an appropriate one:

1. it might not know (be able to produce) the appropriate
behavior, so this behavior is not truly an option for the
animal, or

2. it might fail to inhibit the inappropriate one.

Similarly, there are two reasons why an agent might fail to
inhibit an inappropriate behavior:

1. there may be a general failure of the inhibition mecha-
nism, or

2. it may be incorrectly assigning the inappropriate behavior
higher priority in the present behavioral context.

Notice that the process of exploring (searching for a new
appropriate behavior) is itself a behavior.

These latter two options will be the primary focus of
our research: we will use standard machine learning (e.g.
Mitchell, 1997) for developing new categories of perception
and high-level abstractions in Artificial Life (ALife) simu-
lations for the mechanics of newly learned behaviors. What
we consider key is how a new behavior comes to be inte-
grated into ordered action selection.

Criteria for Success in Modeling

There are two criteria for success in modeling natural intel-
ligence; we would of course like to achieve both. One is
for the performance profile of the average software agent to
be within tolerance of the composite average performance
of the monkey subjects. The other is to be able to replicate
each individual’s learning history. Statistically, the latter is
slightly easier to demonstrate because there are significantly
more datapoints in terms of trials per individual than there
are numbers of individuals. It also allows for the possibil-
ity that the monkey subjects are not all exploiting the same
learning strategy. In this case, one could postulate both a
number of strategies and their distribution across subjects,
and with this both account for and replicate the composite
results. This strategy has been well illustrated by Harris &
McGonigle (1994).

Expected Benefits of this Research

The primary expected benefit of this research is a set of
new idioms for agent architectures which allow for safe,
autonomous extension by the agent of its existing reactive
plans. Notice that in order to assure safety, we expect that,
like the monkeys, these agents will sometimes fail to exploit
potentially useful behaviors. However, we hope to develop
a framework for helping an agent determine when new be-
haviors are likely to be useful.

Secondary benefits are expected to be realized in several
domains:



• We expect the models will help us test current hypotheses
for monkey learning. Indeed, the architectural idioms will
be evaluated on their predictive value. This will of course
also serve as an advance in primatology.

• We intend to deliver results not only in terms of detailed
program code, but also in general terms for adaptation
into a variety architectures: this is what we mean by ‘ar-
chitectural idioms’. We have already demonstrated this
technique (Bryson & Stein, 2001a). We also hope to fur-
ther refine our innovations into design patterns (Gammaet
al., 1995), which would then generalize the applicability
further to any object-oriented software design.

• We will also be attempting to develop specialized tools
usable by non-programmers, specifically primatologists.
These tools will be useful not only within the laboratory,
but also in the classroom. Constructive models have high
explanatory and pedagogical power because they are open
to thorough examination.

Discussion
As we discussed in the introduction, reactive planning has
been one technological response of the AI community to
the problem of robust, reliable behavior in real-time agents.
Reactive artificial intelligence is analogous to genetically-
determined behavior in animals. At a first approximation,
both systems are considered to rely on instructionsprovided
to the agent as part of its fundamental makeup, and to be in-
dependent of any learning or deliberation by the agent itself.

Research has shown, however, that purely reactive intelli-
gence is very limited. Variable state and learning are ubiq-
uitous in natural intelligence and generally necessary or at
least extremely useful in AI (Hexmoor, Horswill, & Ko-
rtenkamp, 1997; Kortenkamp, Bonasso, & Murphy, 1998;
Bryson, 2000a). Even in reactive AI, well-ordered behavior
in complex agents (e.g. those capable of pursuing multiple,
potentially-conflicting goals), generally incorporates stored
state recording recent decisions to focus attention on a sub-
set of possible actions (Newell, 1990; Gat, 1998).

The termlearning is usually applied not to such transient
changes in the state, but to mechanisms that have lasting im-
pact on agent behavior. Nevertheless, the temporal extent of
this ‘lasting’ in natural systems varies widely. One can eas-
ily talk about learning something on one day (or even at one
minute) and having forgotten it the next. Learning in nature
is not only constrained temporally: it is also dependent on
context, complexity (both of stimulus and action), previous
experience and other individual factors. One explanation for
these constraints is that they allow animals to safely and re-
liably incorporate experience-based variation into their be-
havior repertoire, yet remain immune to possibly distracting
experiences that could alter the response repertoire for the
worse.

We would like to highlight the applicability of our re-
search to the concerns of the safe-learning community as
spelled out in the aims of this symposium. We have sug-
gested that modular architectures are well-suited to provid-
ing the sort of constrained, specialized learning that nature

seems to utilize. This is true only if learning is itself modu-
larized. This has not been true in BDI architectures such as
PRS (Georgeff & Lansky, 1987), which use a single database
for learning, and is unusual3 in implementations of the sub-
sumption architecture (Brooks, 1991) due to proscriptions
against learning. However, object-oriented design supports
this system, and and multi-agent learning systems might also
be conducive.

We have mentioned briefly here and discussed at length
elsewhere (e.g. Bryson & Stein, 2001b) the interaction be-
tween such modular learning and reactive planning. Gat
(1998) also describes a compatible though not identical vi-
sion of this relationship. We also mentioned briefly the im-
plications of societies of agents to safe learning. This is an
area we have not yet explored experimentally, but may over
the course of our research. For social animals, it may be
useful for individuals to have different strategies or biases
particularly for exploration and learning. This is particularly
true in the case where the animals also posses social learn-
ing, since an entire family group can learn from one animal’s
success.

Summary
Having adaptable artificial agents is an obvious and signif-
icant goal for AI. We would like agents to be able to learn
from experience, adapt to individual users, correct their own
software, and so forth. Unfortunately, the qualities ‘safe’
and ‘adaptive’ are generally in opposition. In this paper, we
have reviewed evidence from both natural and artificial in-
telligence that the only solution is to provide constraints to
learning.

We have presented a research program which is approach-
ing the problem of safe learning by working from an animal
model. At least to begin, we are particularly concerned with
modelinghow plans are updated, andwhen. Existing pri-
mate research shows that although an animal may possess
a skill that is applicable in a situation, it may never attempt
to apply it, preferring established solutions even if they are
reliably failing. On the other hand, particular learning situa-
tions can result in the animals changing these preferences.
We intend to build functioning AI models of these situa-
tions to test several current theories of specialized learning
for action-selection control.
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