
Intelligence by Design

Principles of Modularity and Coordination for

Engineering Complex Adaptive Agents

Joanna J. Bryson

MIT Artificial Intelligence Laboratory
joanna@ai.mit.edu

http://www.ai.mit.edu/∼joanna



Goal

The aim of this thesis: to make it easier for engineers to

build complex agents which can succesfully behave, learn

and plan.

• Artifacts with ‘personality’ (e.g. autonomous robots,

virtual reality characters.)

• Anything with potentially conflicting goals or behaviors.

Working systems in talk: Standard ALife comparison

platform, mobile robot, model of primate learning.



Outline

• Introduction

– Combinatorics and Search

– Modularity

– Behavior Oriented Design

• Components of Agent Intelligence

• Design Methodology

• Related Work

• Future Work

• Conclusions and Contributions



The Problem

• Combinatorics is the problem. Search is the solution.

– Planning

– Learning

– Design

• The task of intelligence is to bias (focus) search.

– Develop good search techniques.

– Limit search space to likely solutions.

• Engineering is the primary source of bias in AI.



Modularity

• Modularity simplifies design.

– Decomposes the problem into simpler units.

– Focuses search using locally optimal representations.

• It also generates design issues.

– Decomposition

– Coordination

– Learning



Behavior Oriented Design

BOD exploits modularity to limit search while addressing

modularity’s problems:

• Learning is done within modules.

• Modular decomposition is dictated by variable state.

• Coordination between modules is done by hierarchical

reactive plans.



Outline

• Introduction

• Components of Agent Intelligence

– Behaviors

– Reactive Plans

– Examples

• Design Methodology

• Related Work

• Future Work

• Conclusions and Contributions



Components: What Every Agent Wants

1. Modularity

2. Hierarchical Reactive Plans

3. Environment Monitoring / Alarm System

b1

b2

b3

b4

a2

a3

a4

a5

AS

a1

a3

a5



What is a Behavior? (in BOD)

• A module in an agent.

• Control for agent’s actions (expressed and/or internal).

• Perception required for that control.

• Variable state required for perception or control.

• Not fully encapsulated.



A Simple Behavior

screeching



A Behavior with State

screeching

screeching-now?
pulse-duration



Behaviors with Perception

screeching

screeching-now?
pulse-duration

recognize

familiarity-levels
affinity-levels

known,

liked
oo



Behaviors that Aren’t Objects

_ _ _ _ _ _ _ _Â
Â

Â
Â

_ _ _ _ _ _ _ _
face recognizer

identity

²²
screeching

screeching-now?
pulse-duration

recognize

familiarity-levels
affinity-levels

known,

liked
oo



Behaviors with Processes and/or Triggers

_ _ _ _ _ _ _ _ÂÂ ÂÂ
_ _ _ _ _ _ _ _action selection

_ _ _ _ _ _ _Â
Â

Â
Â

_ _ _ _ _ _ _face recognizer

identity

²²screeching

screeching-now?
pulse-duration
inhibit-STM

inhibit

OO

recognize

familiarity-levels
affinity-levels

known,

liked
oo



Outline

• Introduction

• Components of Agent Intelligence

– Behaviors

– Reactive Plans

– Examples

• Design Methodology

• Related Work

• Future Work

• Conclusions and Contributions



What is a Reactive Plan?

• Modularity leads to coordination problems.

– Behavior arbitration

– Multi-agent coordination

– Action selection

• Reactive plans are an engineered solution.

– Planning

– Reactive Planning

– Reactive Plans



Reactive Plans in BOD

• Use hierarchy (modularity) to limit search.

• Take advantage of what engineers are good at:

(currently?)

– Describing sequences of events.

– Ordering priorities.

• Support three types of action selection problems:

– Some things need to be checked at all times.

– Some only need considering in particular contexts.

– Some things reliably follow from others.



Some Things Follow: Action Patterns

〈get a banana → peel a banana → eat a banana〉



Are Production Rules Better than

Sequences?

(have hunger) ⇒ get a banana

(have a banana) ⇒ peel a banana

(have a peeled banana) ⇒ eat a banana



Are Production Rules Better than

Sequences?

(have hunger) ⇒ get a banana

(have a banana) ⇒ peel a banana

(have a peeled banana) ⇒ eat a banana



No — A Sequence is State

〈get a banana from left → pass a banana to right〉

(left neighbor offers banana) ⇒ get a banana from left

(have a banana) ⇒ pass a banana to right



Basic Reactive Plans: State + Flexibility

(hungry) ⇒

x

〈 (full) ⇒ goal

(have a peeled banana) ⇒ eat a banana

(have a banana) ⇒ peel a banana

⇒ get a banana

〉

Many different expressed plans (sequences of behavior) are

determined by one reactive plan.



Parallel-rooted, Ordered Slip-stack

Hierarchical (POSH) Action Selection

• Action Pattern: ι1, ι2, . . . ιn

• Basic Reactive Plans: set of steps {〈πi, ρi, αi〉∗}
– Competence: competence step 〈π, ρ, α, η〉
– Drive Collection: drive 〈π, ρ, α, A, ν〉
∗ No stack (3,000Hz on a 486)

∗ Action scheduler (256Hz on a PentiumII)



Outline

• Introduction

• Components of Agent Intelligence

– Behaviors

– Reactive Plans

– Examples (on other projector)

• Design Methodology

• Related Work

• Future Work

• Conclusions and Contributions



Direction
current

preferred
∗directions

narrow, has dir?, pick open dir

correct dir, lose dir, move, move view? //
_ _ _Â

Â

Â

Â
_ _ _

Action
Selection

direction
which-direction
sense-ring-mask

move, move view?

ccGGGGGGGGG

P-Memory

sonar-history
sonar-expect // C-Sense

sensor-ring-vector

csense

VV

csenseLLLLL

eeLLLL

compound-sense
ªªªªªªªªªª

DDªªªªªªªªªª

Bump

∗bumps

reg bump,
bumped

XX0000000000000000000

bump-fuseoo

_ _Â
Â

Â
Â

_ _Robot

sonarOOOOOOOOOOOOOOO

ggOOOOOOOOOOOO
infra-red

OO

bumpersssssssssssss

99sssssssssss

bump
x, y

next∗

bump-fuse

OO



DP-Map

∗landmarks pick near neighbor, pick further neighbor

untried near neighbor?, untried far neighbor? //
_ _ _Â

Â

Â

Â
_ _ _

Action
Selection

DP-Land
x,y

in-dir
out-dir

in dp, entered dphhhhhhhhhhhhhh

44hhhhhhhhhhhhhh

E-Memory

∗directions
∗times

done-thatBBBB

aaBBBB

continue untried
keep going{{{{{{{{{{{

=={{{{{{{{{{{

_ _ _ _ _Â

Â

Â

Â
_ _ _ _ _

Robot
(and C-Sense)

csense, odometry

OO

direction, timekkkkkkk

55kkkkkkkk



Outline

• Introduction

• Components of Agent Intelligence

• Behavior Oriented Design

– Initial Decomposition

– Cyclic Development

– Example

• Related Work

• Future Work

• Conclusions and Contributions



Initial Decomposition

1. Specify (high-level) what the agent will do.

2. Describe activities as sequences of actions. reactive plans

3. Identify sensory and action primitives from these

sequences.

4. Identify the state necessary to enable the primitives,

cluster primitives by shared state. behaviors

5. Identify and prioritize goals or drives. drive collection

6. Select a first behavior to implement.



Cyclic Development

• Scale the system.

– Code behaviors and / or plans.

– Test and debug code.

• Simplify the design.

– Revise the specifications.



Simplifying the Design

Exploit trade-offs between representations.

• Behavior Modules

• Reactive Plans



Example



Control State Only

walk ⇒

x

〈 (left-feeler-hit) ⇒ avoid-obstacle-left

(right-feeler-hit) ⇒ avoid-obstacle-right

⇒ walk-straight

〉

avoid-obstacle-left ⇒ 〈walk backwards → walk right → walk left〉

avoid-obstacle-right ⇒ 〈walk backwards → walk left → walk right〉



Deictic State as Well

deictic-avoid
hit-left

avoid-hit, feeler-hit,
compensate-avoid

oo
feeler info

oo

walk ⇒
x

〈
(feeler-hit) ⇒ avoid-obstacle

⇒ walk-straight

〉

avoid-obstacle ⇒ 〈walk backwards → avoid hit → compensate avoid〉



Specialized State (rather than Deictic)

specialized-avoid

local-mapstore-obstacle
back-up, find-wayoo

feeler info
oo

walk ⇒
x

〈
(feeler-hit) ⇒ store-obstacle back-up

⇒ find-way

〉



Revising the Specification: State

• Prefer the simplest.

1. Control State

2. Deictic State

3. Specialized State (learning)

4. Meta-State (learning to learn)

• Exceptions:

– Eliminate Plan Redundancy

– Reduce Plan Complexity



Revising the Specification: Control

• Prefer the simplest.

– Single Primitive > Sequence

– Sequence > BRP

– Control State > Variable State

• Exceptions:

– Want part of primitive ⇒ sequence.

– Sequence elements repeated, skipped ⇒ BRP.

– Use variable state to:

∗ Replace lots of triggers.

∗ Generalize control state.



Outline

• Introduction

• Components of Agent Intelligence

• Behavior Oriented Design

– Initial Decomposition

– Cyclic Development

– Example

• Related Work

• Future Work

• Conclusions and Contributions



Transitive Inference

• A > B and B > C implies A > C.

– Not about logic or concrete operational thought.

• McGonigle & Chalmers (1977) show:

– monkeys can do it for 5 items, and

– not as good at triads (neither are childeren).

• Harris & McGonigle (1994) demonstrate:

– model with production rule stack, and

– learning ordering of rules, not of blocks.

• Many neural network models (Wynne 1998).

– show learning but not learning rules.



binary-test

monkey

visual-attention
hand

grasp-seen

see-color, //

grasp

&&_ _ _Â

Â

Â

Â
_ _ _

Action
Selection

apparatus

test-board

set-testoo

see

gg



driven-b-test

_ _ _Â

Â

Â

Â
_ _ _

Action
Selection

monkey

visual-attention
hand

see-color, grasping,
noises, grasp-seenrrrrrrr

99rrrrrrrrr

apparatus

test-board

no-test, new-test,
finish-testJJJJJJJJJ

eeJJJJJJJJJ



prior-learn

_ _ _Â

Â

Â

Â
_ _ _

Action
Selection

apparatus

test-board
reward

find-color, reward-found, new-test,

no-test, finish-test, save-result
oo

monkey

visual-attention
hand

grasp-seen,
noises

grasping,

OO

sequence
seq

sig-dif
weight-shift

adaptive-choice,
consider-rewardSSSSSSSSSSSSSSSS

iiSSSSSSSSSSSSSSSSS

look-atoo



rule-learn

_ _ _Â

Â

Â

Â
_ _ _

Action
Selection

apparatus

test-board
reward

find-color, reward-found, new-test,

no-test, finish-test, save-result, rewarded
oo

monkey

visual-attention
hand

grasping, noises,
grasp-seen

OO

sequence
seq

sig-dif
weight-shift

make-choice,

learn-from-reward
//

rule-learner
*attendants
*rule-seqs

current-focus
current-rule

target-chosen, focus-rule, pick-block,
priority-focus, rules-from-rewardNNNNNNNNNNNNNNNNNNNNNN

ffNNNNNNNNNNNNNNNNNNNNNNN

look-atXXXXXXXXXXXXXXXXXXXX

kkXXXXXXXXXXXXXXXXXXX



Prior-learn without regimented training

Select 1st, Select 2nd, Select 3rd (correct)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



Rule-learn without regimented training

Select 4th, Avoid 3rd, Avoid 2nd (confuses only 3rd with 4th)

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



Rule-learn with regimented training

Select 1st, Avoid 5th, Avoid 4th (correct!)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 P1 P2b P3 T1 T2a T2 T3 
P2a P2c



Outline

• Introduction

• Components of Agent Intelligence

• Design Methodology

• Related Work

– Reactive Control

– Behavior Modules

• Future Work

• Conclusions and Contributions



Related Work: Reactive Control

• Behavior-Based and Production Rule systems, e.g.

Subsumption (Brooks 1986), ANA (Maes 1992), Soar

(Newell 1990), specialize in emergencies.

• Plan-based hybrids, e.g. PRS (Georgeff & Lansky 1987),

JAM (Huber 1999), 3T / RAPs (Bonasso, Firby et. al

1997), specialize in order.

• Only Teleo-Reactive (Nilsson 1994) has BRPs and a user

base. No user base: (Fikes 1972) (Correia and

Steiger-Garção 1995) (me).



Related Work:

Behaviors, Modularity and Learning

• Behavior-Based AI has modularity and specialized

learning, but overly diffuse control. (e.g. Brooks 1991,

Horswill 1993)

• Hybrid systems have reactive plans, but reduce behaviors

to mere primitives, have overly monolithic

representations.



Outline

• Introduction

• Components of Agent Intelligence

• Design Methodology

• Related Work

• Future Work

– Learning

– Tools

– Applications

• Conclusions and Contributions



Learning

• Learning in Behaviors

• Learning of Plans

– Search

– Evolution

– Imitation

• Learning Behaviors

– Existing work is one behavior in BOD.

– Learning dynamical models (e.g. Hogg, Brand)



Tools

• BOD has been applied in a variety of architectures.

– Support object-level coding.

– Implement POSH Action Selection.

– PRS (Meyer 1996), JAM (Huber 1999),

Ymir (Thórisson 1996)

• Tools support methodology across architectures.

– Construction

– Debugging

• Customized tools for users in one domain.



Applications

• Virtual Reality Characters

• Simplifying “Big AI” Systems

– Dialog Systems

– Intelligent Environments

• Cognitive Modeling



Outline

• Introduction

• Components of Agent Intelligence

• Design Methodology

• Related Work

• Future Work

• Conclusions and Contributions



Conclusions

• Engineering is key to AI.

• Modularity supports specialized representations for

focussed tasks.

– This makes learning (and planning) tractable.

• Coordination in time is a critical module.

– Represented via explicit hierarchy and sequence.

• Optimizing for simplicity should be an integral part of

the development cycle.



Contributions

• In this talk:

– Behavior Oriented Design.

– Details of POSH Action Selection.

– Models of primate transitive inference /

learning BRPs.

• Read the thesis:

– Two POSH architectures (C++ and CLOS).

– Relation to other architectures.

– Relation to the brain.

– MAS model of monkey social behavior.



[Talk Boundary]



Drive Collections: BRPs for Environment

Monitoring

life ⇒
〈〈 (something looming) ⇒ avoid

(something loud) ⇒ attend to threat

(hungry) ⇒ forage

⇒ lounge around

〉〉



Revising the Specification – BRPs

• A BRP is a worst-case scenerio sequence backwards.

• A BRP should only have 3-7 elements.

• Too many elements or triggers:

– Two ways to do same goal ⇒ make sibling BRPs

– Multi-step subgoal ⇒ make child sequence or BRP.

• Be careful of termination.

– Converge to goal.

– Fail if goal is impossible (habituate).

– Manage chaining.



Learning Behaviors

BLTM

PSTM

ESTM

SP

TA

AS
ELTM

WM


