
The Insufficiency of Formal Design Methods
– the necessity of an experimental approach

for the understanding and control of complex MAS

Bruce Edmonds
Centre for Policy Modelli ng

Manchester Metropolitan University
 Aytoun Building, Manchester, M1 3GH, UK

http://cfpm.org/~bruce

Joanna J. Bryson
Department of Computer Science

 University of Bath
Bath, BA2 7AY, UK

http://www.cs.bath.ac.uk/~jjb

Abstract

We highlight the limitations of formal methods by
exhibiting two results in recursive function theory: that
there is no effective means of finding a program that
satisfies a given formal specification; or checking that a
program meets a specification. We exhibit a simple MAS
which has all the power of a Turing machine. We argue
that any pure design methodology will f ace
insurmountable difficulties in today’s open and complex
MAS. We recommend instead a methodology based on
experimental method – scientific foundations for MAS
construction and control.

1. Some Limitations of Formal Methods

We start by looking at the limitations of formal
methods. Although these are almost certainly already
known, they are worth reviewing because they are so
under-publicised1, many will not be aware of them.

The idea of formal methods is to write specifications of
software in a formal language. This formal language is
often of a logical or set-theoretic nature. This has two
undisputed advantages: firstly, the formal specification is
unambiguous, and secondly, the specifications can
themselves be syntactically manipulated (e.g. in formal
proofs). This formal language is thus a sort of lingua
franca for software engineers – it allows them to
communicate and manipulate specifications of software.
However, like any language, there are fundamental
difficulties that arise when attempting to translate to and
from it. Here there are the two such problems: one of
relating the specifications to executable code and another

1 We searched the formal methods literature for a list of these

limitations (so we could just reference them) with no success.

of relating informal specifications to the formal
specifications (this will be dealt with in the next section).

Given the nature of computation and program code
two questions present themselves. The first is whether
there is any effective way of getting from a given
specification to a system of software – we will call this the
programming problem. The second is whether there is
any effective means of checking whether a given software
system meets a given specification – the checking
problem.

1.1. The Programming Problem

A particular case of the first question is whether there
is any effective method of producing a program from a
formal specification – single programs are components of
software systems, and if we can’ t do this for programs we
can’ t do it for systems of software. To formalise this we
will assume the Church-Turing thesis ([6] page 67),
namely that “effective method” means a program (e.g. a
Turing machine). Thus this question can be reduced to the
following: is there a program that, given a specification,
will output a program that meets that specification?

Sx Py

A translating
program?

A given formal
specification

A program that
satisfies Sx

T

Figure 1. A supposed program from formal
specifications to appropriate programs.

The answer is, of course, “no” . Even when we know
that there is a program that satisfies a specification, there
is no computation that will t ake us from formal
specifications to such programs. This is shown below.

Turing [18] proved that the ‘halting problem’ is an
undecidable problem (where undecidable means there
provably cannot exist a program or algorithm to answer
it). This is the problem of whether a given program will
eventually come to a halt with a given input – whether
Px(y), program number x applied to input y, ever finishes
with a result or whether it goes on forever. No program
can determine this [18].

Define a series of problems, LH1, LH2, etc., which we
call ‘ limited halting problems’ . LHn is the problem of
‘whether a program with number ≤n and an input ≤n will
ever halt’ . Each of these is computable, since each can be
implemented as a finite lookup table2. Call the programs
that implement these tables: PH1, PH2, etc. respectively.
Now if the specification language can specify each such
program one can form a corresponding enumeration of
formal specifications: SH1, SH2, etc.

The question now is whether there is any way of
computationally finding PHn from the specification SHn.
But if there were such a way we could solve Turing’s
general halting problem in the following manner: first find
the maximum of x and y (call this m); then compute PHm

from SHm; and finally use PHm to compute whether Px(y)
halts. Since we know the general halting problem is
uncomputable, we also know that there is no effective way
of discovering PHn from SHn even though for each SHn

an appropriate PHn exists!
Thus the only question left is whether the specification

language is sufficiently expressive to enable SH1, SH2,
etc. to be formulated. Unfortunately, the construction in
Gödel’s famous incompleteness proof [12] guarantees that
any formal language that can express even basic arithmetic
properties will be able to formulate such specifications.
Thus for any useful specification language, the
programming problem is also undecidable.

2.1. The Checking Problem

Sx Py

A checking
program?

A given formal
specification

A given
program

C

Figure 2. A supposed program for checking
whether a program satisfies a specification.

The checking problem is apparently less ambitious
than the programming problem – here we are given a
program and a specification and have ‘only’ to check

2 Of course, discovering what the correct entries of such a table is an

insurmountable problem, but this is the point.

whether they correspond. The question here is whether
there is any effective or systematic way of doing this.

Again the answer is ‘no’ . To show this we can reuse
the limited halting problems defined in the last subsection.
The counter-example is whether one can computationally
check (using C) that a program P meets the specification
SHn. In this case, we will li mit ourselves to programs, P,
that implements n×� n lookup tables with entries from {0,1}.

Now we can see that if there were a checking program
C that, given a program and a formal specification would
tell us whether the program met the specification, we
could again solve the general halting problem. We would
be able to do this as follows: first find the maximum of x
and y (call this m); then construct a sequence of programs
implementing all possible finite lookup tables of type:
m×� m→� {0,1}; then test these programs one at a time using
C to find one that satisfies SHn (we know there is at least
one: PHm); and finally use this program to compute
whether Px(y) halts. Thus there is no such program, C.

3.1. An Apparently Simple MAS

In order to emphasise how simple a MAS can be and
still be beyond the power of formal methods, consider the
following systems: ‘GASP’ systems (Giving Agent System
with Plans). These have n agents, labelled: 1, 2, 3, etc.,
each of which has a changeable integer store and a finite
number of fixed specified plans. Each time interval the
store of each agent is incremented. Each plan is composed
of a (possibly empty) sequence of ‘ give instructions’ and
finishes with one ‘ test instruction’ . Each ‘give
instruction’ , Ga, has the effect of giving 1 unit to agent a
(if the store is non-zero). The ‘ test instruction’ , JZa,p,q,
determines the plan that will be executed next time period
as plan p if the store of agent a is 0, otherwise plan q.

Thus ‘all ’ that happens in this class of GASP systems
is the giving of tokens with value 1 and the testing of other
agents’ stores to see if they are zero to determine the next
plan. However GASP systems have all the power of
Turing machines, and hence can perform any formal
computation at all – the proof is outlined in the appendix.
Since GASP machines are this powerful, many questions
about it are not amenable to any systematic decision
procedure. For example, if M is any non-empty proper
subset of all possible GASP machine indexes, Rice’s
theorem ([6] page 105) holds, so that determining whether
an arbitrary given GASP machine is in M is
uncomputable.

In conclusion, if a specification language can deal with
basic arithmetic then there is no effective or systematic
way of either getting from a specification to a program
that satisfies it or checking that a program satisfies a given
specification. Of course, almost all realistic applications

require arithmetic. The example of GASP machines
shows how simple such MAS can be.3

2. Some Limitations of Formal Specification

The primary goal in engineering IT systems can be
stated as follows: to produce IT systems that work well in
practice once deployed in their operational context. One
particular strategy for approaching this is what can be
called the formal specification strategy (FSS). This is
divided into three basic stages:

• Agree the goals for the IT system;
• Write a specification that would meet these goals;
• Implement a system that meets this specification.
To succeed with this one has to ensure that: the

identified goals are the appropriate ones for the final
operating context; the specification is such that it will meet
the identified goals once deployed; and the implemented
system will work according to its specification in practice.

Such an approach works well i n relatively simple,
static and analysable situations. However such situations
are becoming increasingly rare. Today’s systems are not
closed unitary processing units designed for a special and
well -defined job, but increasingly are interacting with
other systems designed by different programmers for
disparate (and sometimes unknown) purposes.

Systems, now that they are cheap, pervasive and have
been around for a while, become embedded into the
human practice that has, in turn, adapted to their presence.
This embedding means that an IT system cannot be
considered in isolation from the web of other systems it is
part of – thus no separate, off-line analysis of needs and
specifications is possible. Any implemented system will
affect the human practice it interacts with in unpredictable
ways. Any goals an IT system was designed for might
become out-dated due to its own introduction. For
example, introducing an IT system to help identify fraud
will almost inevitably mean that the kind of fraud
attempted will change (e.g. spam filters).

Environments or systems which are not easily
analysable, that change rapidly in unpredictable ways,
which are composed of lots of different overlapping
aspects, with multiple uses and goals, which are open to
outside interaction, and which are not designed in a
unitary way we will call messy systems or environments.
Messy environments are the rule – neat ones increasingly
the exception. A consequence of the prevalence of
messiness and the primary IT systems engineering goal is
that any methodology for constructing IT systems should
work well with messy systems. Trying to keep systems neat
so that FSS can be retained, while desirable and in some
cases perhaps possible, is putting the cart before the horse.

3 C.f.[13]; also [23] shows some finite design problems infeasible.

We should not be afraid of messy environments, but they
do require a recognition that in such cases the FSS is, at
best, in need of supplementary strategies and, at worst,
inapplicable.

For the above reason and others, the precise context of
operation may be partially unknown to the designers of the
system. This means that either the identified goals will not
be precisely correct or that the goals need to be specified
at a very abstract level, such as “responding to changing
demands of browsers” . Trying to meet very abstract goals
using FSS is difficult, the `distance’ between the
implementation and the goals is just too great. Either one
chooses a high-level (abstract) level of specification, in
which case one can never guarantee that the
implementation meets the specification, or a lower-level
specification, in which case one won’ t know that the
specification meets the stated goals. If one uses many
levels each will add uncertainty – the distance between
goals and implementation remains great.

Of course, nobody attempts to employ FSS as their
only strategy for anything but toy problems. There is
always some debugging that turns out to be necessary,
however carefully one designs and implements a system,
and usually a substantial process of trial and adaptation
takes place after the initial construction [16]. However
reading much of the MAS literature one might be forgiven
for thinking that the design steps are the by far the most
important part of the process of producing working MAS.
For example in [22], there are no sections on validation –
it does briefly point out the difficulties of validating the
BDI-framework for MAS but immediately follows it with
the phrase: “Fortunately we have powerful tools to help us
in our investigation” and goes on to discuss BDI-type
logics. Thus Wooldridge gives the impression that the
formal machinery of a logic somehow compensates for the
difficulty of validation (see [9]).

Several of Jenning’s and Wooldridge’s papers suggest
limiting the complexity of MAS, so as to limit the
difficulties of designing a MAS. For example in [24], the
authors suggest (among others), not to:
• have too many agents (i.e. more than 10);
• make the agents too complex;
• allow too much communication between your agents.

These criteria explicitly rule-out the application of
MAS in any of the messy environments where they will
need to be applied. They hark back to the closed systems
of unitary design that the present era has left way behind.

To the extent that there is an exclusive emphasis on the
design stages in considering MAS we will call it the “Pure
Design Approach” (PDA). There is an adage that
programming is 10% design and implementation and 90%
debugging – an adage that is relevant even when the most
careful design methodology is used. It seems likely that
with MAS there will be an even smaller proportion of
effort spent on the stages characterised by design. The

PDA is obviously a “straw man” , however our arguments
hold to the extent that there is an overemphasis on the
10% and a passing over of the 90%. This paper is a call to
restore the balance – to acknowledge the irreplaceable role
of iterative, experimental methods. MAS needs more than
maths, logic and philosophy to make it work, it needs
scientific foundations.

3. Some Software Production Strategies

A host of strategies have been developed to produce IT
systems adequate to the messy systems they will be
deployed in. We discuss a selection of them below,
looking at their applicabilit y and robustness. The
argument here is for a balanced approach utili sing all of
the possible strategies, rather than focusing on a few.

Abstraction: using abstractions that stand for a lot of
detail and are underpinned by well understood analogies
may enable a programmer to achieve the desired
behaviour by working only at the level of such
abstractions – the analogies used must be accurate in terms
of the effects of the hidden details they stand for.

Automation: when there are many steps that are
amenable to automation (e.g. as in compilation of a formal
language to machine code), many possible translation
errors can be avoided. Useful automation depends upon
there being some good way of understanding the process
being automated, so that one knows when to use it and can
understand the results when it is used.

Standardisation: when a system is composed of many
parts (e.g. agents or modules) one can get the parts
working together in a basic way by agreeing some
standards concerning the form and content of their
interaction. However, one cannot ensure the complete
compatibilit y of these interactions using such a standard
for the reasons given earlier in Section 1. In fact, strict
standards are not even desirable since they overly
constrain development. There is always a tension between
the flexibilit y delegated to the parts and the effectiveness
of a standard in controlli ng interaction. The most robust
standards are not the result of a priori thought but arise, at
least substantially, from actual practice. Many elegant
invented standards are ignored due to their subtle
inappropriateness for common tasks or their complexity.
Yet conceptually messy standards found to meet needs
flourish.

Modularity: where different roles and tasks are fairly
well separable, these can be delegated to different parts of
the system. If a task is in great demand it may be
abstracted, standardised and distributed. However in
many systems that have (in the broadest sense) evolved
over time, such modularity may not be neat – many parts
will have multiple roles, and many roles may be
distributed across many kinds of parts [19].

Formalisation: formalisation can reduce ambiguity and
facilit ate automation. This makes it a natural way of
expressing and enforcing standards. As we have sought to
show above, its role in facilit ating automation is over-
hyped. Whether automation is possible depends upon the
ease with which formal expressions can be written that
reflect the real situation whilst retaining their amenabilit y
to automation. There is an inescapable trade-off between
the expressiveness of a formal systems and the ease with
which it can be automated. Even simple systems (such as
the GASP system above) can be beyond automation.

Transparency: the transparency of a system is the ease
with which the behaviour of a part may be understood and
controlled using an accessible analogy, model or theory.
This model can be partial, as long as it is a good guide to
behaviour. For example its predictions may be only
negative or probabili stic, and the scope over which it is
effective might be limited. In other words, it is not
necessary for the model to be universal, covering all
possible behaviours under all circumstances. We discuss
the transparency of the agent concept below.

Redundancy: one way of attempting to ensure an
outcome in messy circumstances is to implement several
different independent processes in parallel. If one
mechanism fails, possibly another will work. Social and
biological systems abound in this kind of redundancy.
This sort of redundancy requires two things to achieve
maximum robustness: multiplicity and diversity. If the
redundant strategies are essentially the same then their
system’s robustness to uncertain conditions is reduced –
another reason why limitations on MAS to preserve a FSS
might be counter-productive.

Adaptability: inflexible systems can be honed so that
they are very efficient. However, out of their intended
context, they may become useless or even counter-
productive. Systems with the abilit y to adapt to prevaili ng
circumstances require more infrastructure but may in some
circumstances be more reliable. Simple learning and
decision-making abiliti es may allow a part to function in
effective ways unforeseen by its designer. However, such
adaptabilit y comes at the cost of precise control – an
abilit y to cope in unforeseen circumstances generally
implies an abilit y to behave in unforeseen ways. Limiting
agents so that their behaviour is predictable (or even
provable) can rule out needed adaptabilit y.

Testing: however carefully one designs and implements
a system one can never be sure of the resulting behaviour
– the only way to be sure is to try it [16]. In complex
cases an individual system may work as designed but not
interact with its environment in an acceptable way. This
means that one has to determine the behaviour
experimentally – exploring the behaviour, making
hypotheses about the behaviour and testing these to see if
these are the case [4]. The design of a system (if known)
provides a source of suggestions for hypotheses to be

checked, but can never be sufficient on its own, for the
reason that they are seldom of a form that allows the direct
prediction of behaviour. Debugging is a simple case of
such testing.

The approach to engineering MAS over the last decade
has emphasised the first five of these strategies:
abstraction, automation, standardisation, modularity and
formalisation. The chosen abstractions have been
dominated by the relatively small set of Beliefs, Desires
and Intentions (and other closely related ones).
Automation has been focused on verification and
compilation techniques. Standardisation has resulted in a
host of protocols for communication. The modularity is
generally the agent, now supplemented by holonic agents
and teams. The formalisation of choice has been logic.

 Adaptabilit y is often limited to delaying planning
until the moment of choice – the mechanisms of
adaptabilit y are therefore limited to those of inference.
Techniques for testing and debugging have not
significantly developed from those of traditional non-MAS
programming techniques.

4. Towards a Science of MAS Development

This paper argues that more emphasis must be placed
on the tactics in the second half of the list: transparency,
redundancy, adaptabilit y and testing. Further, we suggest
that the abstraction may be the agent if there is a clear
analogy with social actors (see next section). What is
important about this actor representation is that the
representational analogy is powerful and transparent (in
the sense above) so that the analogy of this entity as a
social actor can guide our programming and
experimentation.

The main engine of automation in experimental MAS
methodology is the simulation – a platform for
computational experiments. Modularity in agent-based
simulations is often much less well -defined than in many
MAS. There are often entities such as agents and teams,
but there are also entities such as groups, cultures,
societies, institutions and parties for which it is less easy to
ascribe precise boundaries. Transparency is often
provided by applying mechanisms found in the social or
biological domains, though other domains are also
possible. An understanding of how such mechanisms may
work in their source domains provides a useful starting
point for understanding what they might contribute in
artificial domains.

Redundancy is often an inevitable result of applying
mechanisms found in the social and biological fields, since
these abound in redundant systems. Adaptabilit y is
similarly common, with learning taking a key role. For
many agents in real-time domains learning can be gradual
and complex, but decision making needs to be simple and
immediate [5]. Testing in the form of post hoc theorising

and experimentation dominates all else – this is the key to
a scientific approach.

The sort of systems we have to deal with can be
characterised by several kinds of complexity: what we call
`syntactic’ , `semantic’ and ̀ analytic’ complexity [10]. If a
computational system is syntactically complex then there
is no easy prediction of the resulting behaviour from the
initial set-up of the system. In other words, the
computational ‘distance’ between initial conditions and
outcomes is too great to be analytically bridgeable using
any ‘short-cut’ – the only real way to get the outcomes is
to run the system. The difficulty in bridging this gap
means that there are at least two ‘views’ of the system: that
of the set-up of the system and that of the resulting
behaviour. That such syntactic complexity can exist is
shown by the effectiveness of pseudo-random number
generators or many cellular automata (e.g. [20]).

Semantic complexity is when any formal representation
of a system is necessarily incomplete. Thus any formal
theory is limited in its applicabilit y to a restricted domain
or context. Clearly, in simple computational systems there
should be (in theory) a complete formal representation –
the code itself. However, this may well not be the case in
open or systems designed by different people, when no
adequate representation of the effective code may be
available. Even where it is available, the presence of
syntactic complexity may make this representation useless
for controlli ng the outcomes, thus there may still be no
useful and complete formal representation (effective
semantic complexity). The presence of semantic
complexity means that instead of a single representation of
the outcomes one has an incomplete ‘patchwork’ of
context-dependent models.

Analytic complexity is when it is not possible to
completely analyse a system into a set of independent
parts. In other words, any consideration of a separate part
would necessarily loose some of the behaviour that it
would display when part of the system. One cause of this
is due to the process of embedding – when the rest of the
system adapts to the behaviours of the part. For example,
this commonly occurs when the part is an IT system and
the wider system is the human institution in which it is
deployed. As described earlier, humans adapt rapidly to
new systems frequently employing them in unexpected
ways. A consequence of such embedding is that formal
off-line design and implementation is inadequate [1].

The presence of these kinds of complexity suggests
that a science of MAS may be similar to zoology, in that
there may be lots of essentially different kinds of agents,
teams, trust, modes of communication etc. There may not
be a single methodology, architecture, type of framework,
formalisation or theory that covers them all . It may be that
lots of observation and exploration is necessary before any
abstraction to theory is feasible. That a prori,
foundationalist studies will be, at best, irrelevant and, at

worst, misleading. That abstraction will only be possible
as and where hypotheses are shown to be successful in
experiments and practice. There is a lot of resistance to
such suggestions since it indicates that there will be no
theoretical short-cut to success. Progress will be slower
than some might have hoped and require a lot more
painstaking empirical work.

5. The Roots of the Agent Concept

It is worth considering for a moment the roots of the
agent concept. It may be the case that interacting with
humans may be facilit ated by having some human
characteristics (the “ like me” test of [7]), but the claim for
the utilit y of the agent concept goes far beyond user
interfaces, games and social simulations. The question is:
why would one, in other situations, wish to deal with a
chunk of code in a similar way to a human or animal actor.
In what way does this help in the construction of complex
systems? Why the agent abstraction rather than one of the
other possibiliti es?

If the agent concept is to have effective leverage in
aiding the software production process it needs to be a
good analogy for guiding programmers. In other words,
our intuitions about how social actors might interact in
complex social processes must be able to help direct our
programming of similar actors in the form of artificial
agents. In other words, without an effective analogy with
real social actors there is nothing that is common to all
entities which might be called “software agents” . It is the
abilit y to think about agents as social actors which gives
the agent concept its meaning and is the source of its
potential power.

However there is a problem with this. Except in very
simple cases we do not know very much about how social
actors abiliti es to organise are related to their individual
properties. The full complexities of this macro-micro link
are only starting to be uncovered; some examples can be
found in past papers of this conference and some of its
attendant workshops (e.g. ESOA [17] and MABS [14]).
Here the central question of how particular social or
organisational mechanisms ‘play-out’ in societies of
agents is being experimentally investigated. Here the
analogy between agents and actors is much more explicit.
As a consequence, the findings of these papers may be of
more utilit y to MAS developers than many formalisms.

6. An Experimental Approach

One might reasonably ask what sort of foundations can
we provide for our software components, if formal
foundations are not feasible. The answer must lie in the
validation rather than the verification of code [4]. A
complex software system may behave somewhat like its

design, but one cannot rely on this. The intended
behaviour of a system is only a hypothesis about the
system’s behaviour – it must be checked by
experimentation. The hypothesis that the system is
behaving as designed must compete against other
hypothesis – it is the sensible place to start, but for
complex systems it is likely to be wrong.

Nevertheless, we need some basis for reusing
algorithms when constructing complex MAS. We suggest
that chunks of code (including agents and agent systems)
that are intended for reuse (either conceptually or
verbatim) should be accompanied by a set of testable
hypotheses about that chunk of code’s behaviour4. Each
of these should be of such a nature that they can be
checked by rerunning the code and comparing the results
(or output) of the code against their predictions.
Achieving the desired output randomly should also be
improbable in the long term.

As these tests are run they should be annotated with
data concerning the results of these tests, in particular: the
parameter ranges of those tests, number of runs and
significance of the results. In this way people who are
considering re-using the code will know over which ranges
they can rely on the code in respect to those properties
they need. Developers may avoid re-using code if they
have to rely on properties that are not testable or
parameters outside a tested range. Alternatively,
developers may write new tests themselves or run existing
tests over the parameters they require.

Over time, code and algorithms that are reliable can be
established through co-operative and distributed testing.
This is similar to how public domain code such as Linux is
developed and maintained, except that the reliance put on
code could be based on explicit rather than implicit
information. Such a process is very close to that used in
the natural science – hypotheses are tested in experiments
so that only those hypotheses that survive many attempts
at disconfirmation are trusted. The process of natural
science has a good record at producing useable knowledge
that is applicable to complex constructions (e.g.
spacecraft). There is no reason why a similar kind of
reliabilit y can’ t be built up for software.

7. An Example: Evolutionary Algorithms

The properties of many search algorithms are not
amenable to formal proof due to their stochastic nature
and yet are being applied in complex MAS – e.g. tag-
based evolution for the control of loading agents [11].

The “No Free Lunch” theorems [21] tell us that, in
general, no search algorithm will be better than any other.
The moral of this is that to gain any efficiency one has to
exploit some specific properties of the class of search

4 See further unit tests [1].

spaces one is concerned with. Further, the stochastic
nature of many search algorithms means that proving their
properties is unlikely (expect in artificially simple cases).
Rather this is primarily an empirical matter.

If the code and specification for such a search module
were published along with a database of hypotheses of
average and/or worst case performance w.r.t. different
classes of problem (along with confidence statistics,
parameter settings concerning size etc.), then software
engineers who wished to use it in their system would be
able to make evidence-based judgements on its suitabilit y
for their purposes. Users or academics might wish to
either extend this database of results to new classes of
problems or parameter ranges so as to aid engineers or,
alternatively, to seek to disconfirm them by careful
experiment. Some might dare to make ‘second-order’
hypotheses about the properties of problem classes that
results in certain minimum levels of performance. These
meta-hypotheses would then be themselves subject to
experimental investigation.

To return to our example of a GA, an entry in the
database of hypotheses might be of the form: for a
random problem space with a single solution of size n, a
GA with mutation of 10%, size m, will find the solution
with probabilit y distribution: D(n, m, t), where t is the
number of generations.

At the moment although archetypal fitness landscapes
for which GA variants are postulated, there is no
systematic recording of the conditions of application of
hypotheses for others to refer to. This impedes the use of
these algorithms by others.

8. Conclusion

 The limitations of formal methods have been known
since Gödel. We should not be attempting to formally
mechanise the programming process – this is doomed to
fail except in the simplest of cases. Rather we should seek
scientific foundations for agent systems – that is,
foundations based on experimental method. Although this
means that we will have to give up the ill usion that we can
fully understand our own code, it does offer the real
possibilit y of reliable software systems. To support this
we will have to improve the methodology and technology
for testing and adapting software (‘90%’ of any software
project) to match (or reduce) the effort devoted to the
‘10%’ – the specification and implementation of MAS.

9. Acknowledgements

Thanks to the participants of the ABSS SIG meeting of
AgentLink at Barcelona, 2003 for their comments on the
talk that eventually grew into this paper.

10. References

[1] Beck, K. (2000) Extreme Programming Explained:
Embrace Change, Reading MA, Addison-Wesley.

[2] Bryson, J. J. (2004) Modular representations of cognitive
phenomena in AI, psychology and neuroscience, Visions of
Mind, D. Davis (ed.), Idea Group Inc.

[3] Bryson, J. J. & Hauser, M. D. (2002) What monkeys see
and don’ t do, AAAI Spring Symposium on Safe Learning
Agents, M. Barley & H. W. Guesgen (eds.) AAA I.

[4] Bryson, J. J., Lowe W. & Stein, L. A. (2000) Hypothesis
Testing for Complex Agents, NIST Workshop on
Performance Metrics for Intelligent Systems, A. M. Meystel
& E. R. Messina (eds.) 233-240. NIST.

[5] Bryson, J. J. & Stein, L. A. (2001) Modularity and Design
in Reactive Intelli gence, IJCAI, 1115-1120, Morgan
Kaufman.

[6] Cutland, N. J. (1980) Computability. Cambridge University
Press.

[7] Dautenhahn, K. (1997) I could be you – the
phenomenological dimension of social understanding.
Cybernetics and Systems, 25:417-453.

[8] Davis, M. (ed.) (1965) The Undecidable. New York:
Raven.

[9] Edmonds, B. (2002). A review of “Reasoning about
Rational Agents” . J. of Artif. Societies and Social Simul.
5(1). http://jasss.soc.surrey.ac.uk/5/1/reviews/edmonds.html

[10] Edmonds, B. (2003). Towards an ideal social simulation
language. In Sichman, J. et al (eds.), Multi-Agent-Based
Simulation II: 3rd Int. Workshop, (MABS02), Revised
Papers, pages 104-124, Springer, LNAI, 2581.

[11] Hales, D. & Edmonds, B. (2002) Groups and organizations:
Evolving social rationality for MAS using "tags". In Proc.
of the 1st Int. joint conf. on Autonomous Agents and
Multiagent Systems, Bologna, Italy. ACM Press, 497-503.

[12] Gödel, K. (1931) Uber formal unentscheidbare Sätze der
Principia Mathematica und verwandter System I.
Monatschefte Math. Phys. 38: 173-198. Translated in [8].

[13] Harel, D. (2003) Computers Ltd.: What they really can’ t
do. Oxford.

[14] Hales, D. & al. (eds.) (2003) Multi-Agent Based Modelling
III (MABS 2003). Springer, LNAI, 2927.

[15] Moss, S. & Edmonds, B. (1994) Economic Methodology
and Computabilit y, IFAC Conf. on Computational
Economics, Amsterdam, 1994.

[16] Parnas, D. L. (1985) Software Aspects of Strategic Defense
Systems, American Scientist, 73(5): 432-440.

[17] Serugendo, G. Di M., & al. (2003) 1st Int. Workshop on
Eng. Self-Org. Applications, AAMAS’03, Melbourne,
Australia.

[18] Turing, A.. M. (1936) On computable numbers, with an
application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. 42:230-65; 43:544-6. Reprinted in [8].

[19] Wimsatt, W. (1972). Complexity and Organisation. In
Scavenger and Cohen (eds.), Studies in the Philosophy of
Sciences. Dordrecht: Riddle, 67-86.

[20] Wolfram, S. (1986) Random sequence generation by
cellular automata. Adv.s in Applied Math., 7:123-169.

[21] Wolpert, D. (1996) The lack of a priori distinctions
between learning algorithms. Neural Computation, 8:1341-
1390.

[22] Wooldridge, M. (2000) Reasoning about Rational Agents.
Cambridge, MA: MIT Press.

[23] Wooldridge, M. (2000) The Computational Complexity of
Agent Design Problems. Proc. of the 4th Int. Conf. on
MultiAgent Systems), IEEE Computer Society, 341-348.

[24] Wooldridge, M. and Jennings, N. (1998). Pitfalls of agent-
oriented development. In Sycara, K. P. and Wooldridge,
M., (eds.), Proc. of the 2nd Int. Conf. on Autonomous
Agents, Minneapolis, USA. ACM Press, pages 385-391.

11. Appendix – Proof Outlines

In the outlines below we use some standard results in
recursive function theory, which we quote from [6].

Let the specification language, L , be that of a standard
first order classical logic with arithmetic: having symbols:
0, 1, +, ×, =, ∀, ∃, ¬, ∧, ∨, →, as well as variables: x, y, z,
… and brackets (all with the standard semantics). To
formalise the programming and checking problems we
need to effectively enumerate statements in this language:
S1, S2, etc.; and programs: P1, P2, etc.. Px(y) represents the
functions that results from program with index x applied to
input y; if the program halts it will output the value Px(y)
and Px(y)↓z ≡ ‘Px(y) halts with resulting value z’ . We use
the following ([6] page 145) due to Gödel [12]:

Suppose that M(x1,…,xn) is a decidable predicate.
Then it is possible to construct a statement σ� (x1,…,xn) of
L that is a formal counterpart of M(x1,…,xn) in this sense:
for any a1,…an∈N: M(x1,…,xn) holds iff σ� (x1,…,xn) does

Now the predicate Hn(x,y,z,t) ≡ ‘Px(y) halts in t or
fewer steps resulting in the value z’ , is decidable ([6] page
88), so by the above there is a statement h(x,y,z,t) in L
such that H(x,y,z,t) is true iff h(x,y,z,t) is. So define SHn

as ∃z∃t(h(x,y,z,t))∧x≤n∧y≤n. The effectiveness of the
enumeration of statements in L means that there is a
computable function θ(n) such that Sθ(n) is SHn.

PHn is defined as a program that implements an n×n
lookup table whose entries are 0 or 1, where the number at
column number x and row y is 1 if Px(y) halts and 0
otherwise. This is computable by the Church-Turing
Thesis ([6] page 67) due to its finite nature.

There is no computable function, PT, such that for all
n and x,y≤n, PPT(n)(x,y)=1 if Px(y) halts (and 0 o.w).

PPT(max(x,y))(x,y)=1 if Px (y) halts and 0 if it does not.
PPT(max(x,y))(x,y)=ψ2

U(PT(max(x,y)),x,y), where ψ2
U is the

universal binary function which is computable ([6] page
86). If T was computable then ψ2

U(PT(max(x,y)),x,y)
would also be, but this decides the halting problem which
is impossible [18].

 There is no computable function, T(n), such that if
binary predicate, Sn∈L then PT(n)(y)↓z iff Sn(y,z) holds.

Suppose there was such, then T(θ
�
(n))=PT(n) would be

computable, which would contradict the previous lemma.
There is no computable function, C, such that

C(n,m)=1 iff, ∀y,z (Pn(y)↓z iff Sm(y,z)) holds (o.w. 0).
Let: PPHn,1, PPHn,2, etc. be an enumeration of

programs that implement all possible n×� n→� {0,1} lookup
tables. Now by the effectiveness of program enumeration
and the Church-Turing thesis there is a computable
function: φ� (n,m) such that Pφ� (n,m) is PPHn,m. Now suppose
there was such a C, then µn(C(φ� (max(x,y),n),θ(max(x,y)))
is computable (where µ is the minimisation function 10
page 43-45) but also the function T(n) – a contradiction.

GASP machines can emulate any Turing Machine.
The class of Turing machines is computationally

equivalent to that of unlimited register machines (URMs)
([6] page 57). That is the class of programs with 4 types
of instructions which refer to registers, R1, R2, etc. which
hold positive integers. The instruction types are: Sn,
increment register Rn by one; Zn, set register Rn to 0; Cn,m,
copy the number from Rn to Rm (erasing the previous
value); and Jn,m,q, if Rn=Rm jump to instruction number q.
This is equivalent to the class of AURA programs which
just have two types of instruction: Sn, increment register
Rn by one; and DJZn,q, decrement Rn if this is non-zero
then if the result is zero junp to instruction step q [15].
Thus we only need to prove that given any AURA
program we can simulate its effect with a suitable GASP
system. Given an AURA program of m instructions: i1, i2,
…, im which refers to registers R1, …, Rn, we construct a
GASP system with n+2 agents, each of which has m plans.
Agent An+1 is basically a dump for discarded tokens and
agent An+2 remains zero (it has the single plan: (Gn+1,
Ja+1,1,1)). Plan s (s∈{ 1,…,m}) in agent number a
(a∈{ 1,…,n}) is determined as follows: there are four
cases depending on the nature of instruction number s:

1. is is Sa: plan s is (Ja,s+1,s+1);
2. is is Sb where b≠a: plan s is (Gn+1, Ja,s+1,s+1);
3. is is DJZa,q: plan s is (Gn+1, Gn+1, Ja,q,s+1);
4. is is DJZb,q where b≠a: plan s is (Gn+1, Ja,q,s+1).
Thus each plan s in each agent mimics the effect of

instruction s in the AURA program with respect to the
particular register that the agent corresponds to.

