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Abstract

We highlight the limitations of formal methods by
exhibiting two results in reaursive function theory: that
there is no effedive means of finding a pogram that
satisfies a gven formal spedfication; or checkng that a
program meés a spedfication. We exibit a simple MAS
which has all the power of a Turing machine. We argue
that any pure design methoddogy will face
insurmourtable difficulties in today’s open and complex
MAS. We recommend instead a methoddogy based on
experimental method — scientific founddions for MAS
construction andcontrol.

1. SomeLimitations of Formal Methods

We start by looking at the limitations of formal
methods.  Although these are dmost certainly arealy
known, they are worth reviewing becaise they are so
under-publi cised*, many will not be avare of them.

The ideaof forma methods isto write spedfications of
software in a forma language. This formal languege is
often of a logicd or set-theoretic nature. This has two
undisputed advantages: firstly, the formal spedficdion is
unambiguous, and seondy, the spedficaions can
themselves be syntadicdly manipulated (e.g. in formal
prodfs). This forma languege is thus a sort of lingua
franca for software engineas — it alows them to
communicate and manipulate spedficaions of software.
However, like aiy language, there ae fundamental
difficulties that arise when attempting to trandate to and
from it. Here there ae the two such problems. one of
relating the spedfications to exeautable ade and another

1 We searched the formal methods literature for a list of these
limitations (so we could just reference them) with no success
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of relating informal spedficdions to the formal
spedficaions (thiswill be dedt with in the next sedion).

Given the nature of computation and program code
two questions present themselves. The first is whether
there is any effedive way of getting from a given
spedficaion to a system of software —we will cdl thisthe
programmning problem. The second is whether there is
any effedive means of cheding whether a given software
system meds a given spedficaion — the checkng
problem.

1.1.  TheProgramming Problem

A particular case of the first question is whether there
is any effedive method o producing a program from a
formal spedficéaion — single programs are components of
software systems, and if we car't do this for programs we
can't do it for systems of software. To formalise this we
will asaume the Church-Turing thesis ([6] page 67),
namely that “effedive method” means a program (e.g. a
Turing machine). Thus this question can be reduced to the
following: is there a program that, given a spedfication,
will output a program that meds that spedfication?
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Figure 1. A supposed program from formal
specifications to appropriate programs.

The answer is, of course, “no”. Even when we know
that there is a program that satisfies a spedfication, there
is no computation that will take us from formal
spedficaions to such programs. Thisis sown below.



Turing [18] proved that the ‘halting problem’ is an
undeddable problem (where undecidable means there
provably cannot exist a program or algorithm to answer
it). Thisis the problem of whether a given program will
eventually come to a halt with a given input — whether
P«(y), program number x applied to input y, ever finishes
with a result or whether it goes on forever. No program
can determine this[18].

Define aseries of problems, LHy, LH,, etc., which we
cdl ‘limited halting problems. LH, is the problem of
‘whether a program with number <n and an input <n will
ever halt’. Each of these is computable, since eab can be
implemented as a finite lookup table?. Call the programs
that implement these tables: PH,, PH,, etc. respedively.
Now if the spedficaion language can spedfy ead such
program one can form a rresponding enumeration of
formal spedficaions: SH;, SHo, etc.

The question now is whether there is any way of
computationally finding PH, from the spedficaion SH,.
But if there were such a way we wuld solve Turing's
genera halting problem in the foll owing manner: first find
the maximum of x and y (cdl this m); then compute PH,
from SH,,; and finally use PH,, to compute whether P,(y)
halts. Since we know the general halting problem is
uncomputable, we dso know that there is no effedive way
of discovering PH,, from SH,, even though for each SH,
an appropriate PH,, exists!

Thus the only question left is whether the spedfication
language is aufficiently expressve to enable SH;, SH,,
etc. to be formulated. Unfortunately, the anstruction in
Gddel’ s famous incompletenessproof [12] guarantees that
any formal languege that can expresseven basic aithmetic
properties will be ale to formulate such spedficaions.
Thus for any wuseful spedficaion languege, the
programming problem is also undeadable.

21.  TheChecking Problem

C
A cheding
S, program? P,
A given formal A given
specification program

Figure 2. A supposed program for checking
whether a program satisfies a specification.

The deding problem is apparently less ambitious
than the programming problem — here we ae given a
program and a spedficaion and have ‘only’ to chedk

2 Of course, discoveri ng what the correct entries of such a table is an
insurmountable problem, but thisisthe point.

whether they correspond. The question here is whether
there is any effedive or systematic way of doingthis.
Again the axswer is ‘no’. To show this we can reuse
the limited halting problems defined in the last subsedion.
The cunter-example is whether one can computationally
ched (using C) that a program P mees the spedficdion
SH,,. In this case, we will li mit ourselves to programs, P,
that implements nxn lookup tables with entries from {0,1}.
Now we can seethat if there were a chedking program
C that, given a program and a formal spedficaion would
tell us whether the program met the spedfication, we
could again solve the general halting problem. We would
be ale to dothis as follows: first find the maximum of x
and y (cdl this m); then construct a sequence of programs
implementing al possble finite lookup tables of type:
mxm-—{0,1}; then test these programs one & atime using
C to find one that satisfies SH,, (we know there is at least
one: PH,); and finally use this program to compute
whether P,(y) halts. Thusthereisno such program, C.

3.1 AnApparently Smple MAS

In order to emphasise how simple aMAS can be and
still be beyond the power of formal methods, consider the
following systems. ‘GASP' systems (Giving Agent System
with Plans). These have n agents, labelled: 1, 2, 3, etc,,
ead of which has a dangeable integer store and a finite
number of fixed spedfied plans. Each time interval the
store of ead agent isincremented. Each planis composed
of a (posgbly empty) sequence of ‘give instructions' and
finishes with one ‘test instruction’. Each ‘give
instruction’, G,, has the dfed of giving 1 unit to agent a
(if the store is non-zero). The ‘test instruction’, JZap.q,
determines the plan that will be exeauted next time period
asplan p if the store of agent a is 0, otherwise plan g.

Thus ‘al’ that happens in this class of GASP systems
isthe giving of tokens with value 1 and the testing of other
agents stores to seeif they are zeo to determine the next
plan. However GASP systems have dl the power of
Turing machines, and hence ca perform any formal
computation at al — the proof is outlined in the gpendix.
Since GASP machines are this powerful, many questions
about it are not amenable to any systematic dedsion
procedure. For example, if M is any non-empty proper
subset of all posshle GASP madiine indexes, Rice€s
theorem ([6] page 105) holds, so that determining whether
an arbitrary given GASP madine is in M is
uncomputable.

In conclusion, if a spedficaion language can ded with
basic aithmetic then there is no effedive or systematic
way of either getting from a spedfication to a program
that satisfies it or chedking that a program satisfies a given
spedficaion. Of course, almost all redistic gpplicaions



require arithmetic. The eample of GASP machines
shows how simple such MAS can be.®

2. Some Limitations of Formal Specification

The primary goal in engineaing IT systems can be
stated as follows: to produce IT systems that work well in
practice once deployed in their operational context. One
particular strategy for approaching this is what can be
cdled the forma spedficaion strategy (FSS. This is
divided into threebasic stages:

e Agreethegoalsfor the T system;

*  Write aspedfication that would mee these goals;

e Implement a system that meds this pedficaion.

To succeal with this one has to ensure that: the
identified goals are the gpropriate ones for the final
operating context; the spedficaion is such that it will mee
the identified goals once deployed; and the implemented
system will work acoordingto its gedfication in pradice

Such an approach works well in relatively simple,
gtatic and analysable situations. However such situations
are becoming increasingly rare. Today's g/stems are not
closed unitary processng urits designed for a spedal and
well-defined job, but incressingly are interading with
other systems designed by different programmers for
disparate (and sometimes unknown) purposes.

Systems, now that they are cheg, pervasive and have
been around for a while, become ambedded into the
human pradicethat has, in turn, adapted to their presence
This embedding means that an IT system cannot be
considered in isolation from the web of other systemsit is
part of — thus no separate, off-line analysis of neals and
spedficaions is possble. Any implemented system will
affed the human pradiceit interads with in urpredictable
ways. Any goals an IT system was designed for might
become out-dated due to its own introduction. For
example, introducing an IT system to help identify fraud
will amost inevitably meen that the kind of fraud
attempted will change (e.g. spam filters).

Environments or systems which are not ealy
analysable, that change rapidly in urpredictable ways,
which are composed o lots of different overlapping
aspeds, with multiple uses and goals, which are open to
outside interadion, and which are not designed in a
unitary way we will cdl messy systems or environments.
Mesg/ environments are the rule — nea ones increasingly
the exception. A consequence of the prevalence of
mesdgnessand the primary IT systems engineeing goa is
that any methodology for constructing IT systems should
work well with messy systems. Trying to keep systems nea
so that FSScan be retained, while desirable and in some
cases perhaps possble, is putting the cat before the horse.

3 C.f.[13]; aso[23] shows ome finite design problemsinfeasible.

We should not be draid of messy environments, but they
do require areagnition that in such cases the FSSis, at
best, in need of supplementary strategies and, at worst,
inapplicable.

For the @ove reason and athers, the predse context of
operation may be partially unknown to the designers of the
system. This means that either the identified goals will not
be predsely corred or that the goals need to be spedfied
at a very abstrad level, such as “responding to changing
demands of browsers’. Tryingto mee very abstrad goals
using FSS is difficult, the ‘distanc€ between the
implementation and the goals is just too grea. Either one
chooses a hightlevel (abstraa) level of spedficaion, in
which cese one can nrever guarantee that the
implementation meds the spedfication, or a lower-level
spedficaion, in which case one won't know that the
spedficaion meds the stated goals. If one uses many
levels eath will add uncertainty — the distance between
goals and implementation remains gred.

Of course, nobody attempts to employ FSS as their
only strategy for anything but toy problems. There is
always me debuggng that turns out to be necessary,
however carefully one designs and implements a system,
and usually a substantial process of trial and adaptation
takes place #ter the initial construction [16]. However
reading much of the MAS literature one might be forgiven
for thinking that the design steps are the by far the most
important part of the processof producing working MAS.
For example in [22], there ae no sedions on validation —
it does briefly point out the difficulties of validating the
BDI-framework for MAS but immediately foll ows it with
the phrase: “Fortunately we have powerful tools to help us
in our investigation” and goes on to dscuss BDI-type
logics. Thus Wodldridge gives the impresson that the
formal machinery of alogic somehow compensates for the
difficulty of validation (see[9]).

Several of Jenning's and Wooldridge's papers suggest
limiting the complexity of MAS, so as to limit the
difficulties of designing a MAS. For example in [24], the
authors suggest (among others), not to:

» havetoo many agents (i.e. more than 10);
* makethe gyentstoo complex;
» alow too much communicaion between your agents.

These aiteria explicitly rule-out the gplicaion of
MAS in any of the mesg/ environments where they will
need to be gplied. They hark bad to the dosed systems
of unitary designthat the present era has left way behind.

To the extent that there is an exclusive emphasis on the
design stages in considering MAS we will cdl it the “Pure
Design Approadh” (PDA). There is an adage that
programming is 10% design and implementation and 90%
debuggng — an adage that is relevant even when the most
caeful design methoddogy is used. It seams likely that
with MAS there will be an even smaller propation of
effort spent on the stages charaderised by design. The



PDA is obvioudly a “straw man”, however our arguments
hold to the extent that there is an overemphasis on the
10% and a passng over of the 90%. This paper isa cdl to
restore the balance— to adknowledge the irreplace#le role
of iterative, experimental methods. MAS neeads more than
maths, logic and philosophy to make it work, it needs
scientific foundations.

3. Some Softwar e Production Strategies

A host of strategies have been developed to producel T
systems adequate to the messy systems they will be
deployed in. We discuss a seledion of them below,
looking at their applicability and robustness The
argument here is for a balanced approach utilising al of
the possble strategies, rather than focusing on a few.

Abstraction: using abstradions that stand for a lot of
detail and are underpinned by well understood analogies
may enable a programmer to adiieve the desired
behaviour by working only a the level of such
abstradions — the analogies used must be acarate in terms
of the dfeds of the hidden detail s they stand for.

Automation: when there ae many steps that are
amenable to automation (e.g. asin compil ation of aformal
language to machine @de), many possble trandation
errors can be avoided. Useful automation depends upon
there being some good way of understanding the process
being automated, so that one knows when to use it and can
understand the results when it is used.

Sandardisation: when a system is composed of many
parts (e.g. agents or modules) one can et the parts
working together in a basic way by agreeng some
standards concerning the form and content of their
interadion. However, one canot ensure the wmplete
compatibility of these interadions using such a standard
for the reasons given ealier in Sedion 1. In fad, strict
standards are not even desirable since they overly
constrain development. There is always a tension between
the flexibility delegated to the parts and the dfediveness
of a standard in controlling interadion. The most robust
standards are not the result of a priori thought but arise, at
least substantially, from adual pradice Many elegant
invented standards are ignored due to their subtle
inappropriateness for common tasks or their complexity.
Yet conceptualy messy standards found to med needs
flourish.

Modularity: where different roles and tasks are fairly
well separable, these can be delegated to different parts of
the system. If a task is in geead demand it may be
abstraded, standardised and dstributed. However in
many systems that have (in the broadest sense) evolved
over time, such modularity may not be nea — many parts
will have multiple roles, and many roles may be
distributed aaossmany kinds of parts[19].

Formalisation: formali sation can reduce ambiguity and
fadlitate automation. This makes it a natural way of
expressng and enforcing standards. As we have sought to
show above, its role in fadlitating automation is over-
hyped. Whether automation is posshble depends upon the
ease with which forma expressons can be written that
refled the red situation whilst retaining their amenability
to automation. There is an inescapable trade-off between
the expressvenessof a formal systems and the eae with
which it can be aitomated. Even simple systems (such as
the GASP system above) can be beyond automation.

Transparency: the transparency of a system is the eae
with which the behaviour of a part may be understood and
controlled using an accessble analogy, model or theory.
This model can be partial, aslong as it is a good guide to
behaviour. For example its predictions may be only
negative or probabilistic, and the scope over which it is
effedive might be limited. In other words, it is not
necesssary for the model to be universal, covering all
possble behaviours under all circumstances. We discuss
the transparency of the agent concept below.

Redundancy: one way of attempting to ensure an
outcome in messy circumstances is to implement several
different independent processes in pardlel. If one
medhanism fails, posshly another will work. Social and
biologicd systems abound in this kind of redundancy.
This sort of redundancy requires two things to achieve
maximum robustness multiplicity and dversity. If the
redundant strategies are esentialy the same then their
system’s robustness to uncertain conditions is reduced —
another reason why limitations on MAS to preserve aFSS
might be counter-productive.

Adaptability: inflexible systems can be honed so that
they are very efficient. However, out of their intended
context, they may become useless or even counter-
productive. Systems with the ability to adapt to prevaili ng
circumstances require more infrastructure but may in some
circumstances be more reliable.  Simple leaning and
dedsion-making abiliti es may allow a part to function in
effedive ways unforeseen by its designer. However, such
adaptability comes at the st of predse wntrol — an
ability to cope in urforeseen circumstances generaly
implies an ahility to behave in urforeseen ways. Limiting
agents © that their behaviour is predictable (or even
provable) can rule out needed adaptabilit y.

Testing: however carefully one designs and implements
a system one can never be sure of the resulting behaviour
— the only way to be sure isto try it [16]. In complex
cases an individual system may work as designed but not
interad with its environment in an acceptable way. This
means that one has to determine the behaviour
experimentally — exploring the behaviour, making
hypoatheses about the behaviour and testing these to seeif
these ae the cae [4]. The design of a system (if known)
provides a source of suggestions for hypotheses to be



chedked, but can never be sufficient on its own, for the
reason that they are seldom of aform that al ows the dired
prediction of behaviour. Debuggng is a smple cae of
such testing.

The gproac to engineeing MAS over the last decale
has emphasised the first five of these strategies:
abstradion, automation, standardisation, modularity and
formalisation. The cosen abstradions have been
dominated by the relatively small set of Beliefs, Desires
and Intentions (and aher closely related ones).
Automation has been focused on verificdion and
compil ation techniques. Standardisation has resulted in a
host of protocols for communication. The modularity is
generaly the agent, now supplemented by holonic agents
and teams. The formali sation of choice has been logic.

Adaptability is often limited to delaying planning
until the moment of choice — the medanisms of
adaptability are therefore limited to those of inference
Techniques for testing and debuggng have not
significantly developed from those of traditional non-MAS
programming techniques.

4. Towardsa Science of MAS Development

This paper argues that more emphasis must be placed
on the tadics in the second half of the list: transparency,
redundancy, adaptability and testing. Further, we suggest
that the astradion may be the aent if there is a dea
analogy with social adors (see next sedion). What is
important about this ador representation is that the
representational analogy is powerful and transparent (in
the sense aove) so that the analogy of this entity as a
social ador can gude our programming and
experimentation.

The main engine of automation in experimental MAS
methoddogy is the simulation — a platform for
computational experiments. Modularity in agent-based
simulations is often much less well-defined than in many
MAS. There ae often entities such as agents and teams,
but there ae dso entities sich as groups, cultures,
societies, institutions and parties for which it islesseasy to
ascribe predse boundaries.  Transparency is often
provided by applying mechanisms found in the socia or
biologicd domains, though other domains are dso
possble. An urnderstanding of how such medanisms may
work in their source domains provides a useful starting
point for understanding what they might contribute in
artificial domains.

Redundancy is often an inevitable result of applying
medhanisms found in the social and hiologicd fields, since
these aound in redundant systems. Adaptability is
similarly common, with leaning taking a key role. For
many agents in red-time domains leaning can be gradual
and complex, but dedsion making reeds to be simple and
immediate [5]. Testing in the form of post hoc theorising

and experimentation dominates all else — thisisthe key to
ascientific goproach.

The sort of systems we have to ded with can be
charaderised by several kinds of complexity: what we cal
“syntadic’, ‘semantic’ and “analytic' complexity [10]. If a
computational system is syntactically complex then there
is no easy prediction of the resulting behaviour from the
initial set-up of the system. In other words, the
computational ‘distance between initial conditions and
outcomes is too grea to be analyticdly bridgeable using
any ‘short-cut’ — the only red way to get the outcomes is
to run the system. The difficulty in bridging this gap
means that there ae & least two ‘views' of the system: that
of the set-up o the system and that of the resulting
behaviour. That such syntadic complexity can exist is
shown by the dfediveness of pseudo-random number
generators or many cdlular automata (e.g. [20]).

Semantic complexity is when any formal representation
of a system is necessarily incomplete. Thus any formal
theory is limited in its applicability to a restricted damain
or context. Clealy, in smple computational systems there
should be (in theory) a complete formal representation —
the mde itself. However, this may well not be the cae in
open or systems designed by different people, when no
adequate representation of the dfedive mde may be
available. Even where it is available, the presence of
syntadic complexity may make this representation useless
for controlling the outcomes, thus there may <till be no
useful and complete formal representation (effedive
semantic  complexity). The presence of semantic
complexity means that instead of a single representation of
the outcomes one has an incomplete ‘patchwork’ of
context-dependent models.

Analytic complexity is when it is not posshle to
completely analyse a system into a set of independent
parts. In other words, any consideration of a separate part
would necessarily loose some of the behaviour that it
would dsplay when part of the system. One cause of this
is due to the processof embedding — when the rest of the
system adapts to the behaviours of the part. For example,
this commonly occurs when the part isan IT system and
the wider system is the human ingtitution in which it is
deployed. As described ealier, humans adapt rapidly to
new systems frequently employing them in urexpeded
ways. A consequence of such embedding is that formal
off-line design and implementation is inadequate [1].

The presence of these kinds of complexity suggests
that a science of MAS may be similar to zoodlogy, in that
there may be lots of essntialy different kinds of agents,
teams, trust, modes of communication etc. There may not
be asinge methoddogy, architedure, type of framework,
formali sation or theory that coversthem all. It may be that
lots of observation and exploration is necessary before any
abstradion to theory is feasible. That a prori,
foundationalist studies will be, at best, irrelevant and, at



worst, misleading. That abstracion will only be possble
as and where hypotheses are shown to be successul in
experiments and pradice There is a lot of resistance to
such suggestions snce it indicaes that there will be no
theoreticd short-cut to success Progress will be slower
than some might have hoped and require a lot more
painstaking empirica work.

5. TheRoots of the Agent Concept

It is worth considering for a moment the roats of the
agent concept. It may be the cae that interading with
humans may be fadlitated by having some human
charaderistics (the “like me” test of [7]), but the daim for
the utility of the agent concept goes far beyond user
interfaces, games and social simulations. The question is:
why would one, in other situations, wish to ded with a
chunkof code in a similar way to a human or animal ador.
In what way does this help in the construction of complex
systems? Why the agent abstradion rather than one of the
other posshiliti es?

If the agent concept is to have dfedive leverage in
aiding the software production processit neels to be a
good analogy for guiding programmers. In other words,
our intuitions about how socia adors might interad in
complex socia processes must be ale to help dired our
programming of similar adors in the form of artificial
agents. In other words, without an effedive analogy with
red socia adors there is nothing that is common to all
entities which might be cdled “software agents’. It isthe
ability to think about agents as ©cial adors which gves
the agent concept its meaning and is the source of its
potential power.

However there is a problem with this. Except in very
simple caes we do not know very much about how social
adors abiliti es to organise ae related to their individual
properties. The full complexities of this maao-micro link
are only starting to be uncovered; some examples can be
found in past papers of this conference and some of its
attendant workshops (e.g. ESOA [17] and MABS [14]).
Here the ceantral question of how particular social or
organisational mechanisms ‘play-out’ in societies of
agents is being experimentally investigated. Here the
analogy between agents and adors is much more eplicit.
As a onsequence, the findings of these papers may be of
more utility to MAS devel opers than many formalisms.

6. An Experimental Approach

One might reasonably ask what sort of foundations can
we provide for our software cmponents, if formal
foundations are not feasible. The axswer must lie in the
validation rather than the verification of code [4]. A
complex software system may behave somewhat like its

design, but one canot rely on this. The intended
behaviour of a system is only a hypothesis abou the
system’'s behaviour — it must be cdeckal by
experimentation.  The hypothesis that the system is
behaving as designed must compete aainst other
hypathesis — it is the sensible place to start, but for
complex systemsit is likely to be wrong.

Nevertheless we need some basis for reusing
algorithms when constructing complex MAS. We suggest
that chunks of code (including agents and agent systems)
that are intended for reuse (either conceptualy or
verbatim) should be acompanied by a set of testable
hypotheses about that chunk of code's behaviour®. Eacd
of these should be of such a nature that they can be
cheded by rerunning the mde and comparing the results
(or output) of the mde aainst their predictions.
Achieving the desired output randomly should also be
improbable in the long term.

As these tests are run they should be anotated with
data oncerning the results of these tests, in particular: the
parameter ranges of those tests, number of runs and
significance of the results. In this way people who are
considering re-using the wde will know over which ranges
they can rely on the @de in resped to those properties
they need. Developers may avoid re-using code if they
have to rely on properties that are not testable or
parameters outside a tested range. Alternatively,
developers may write new tests themselves or run existing
tests over the parameters they require.

Over time, code and algorithms that are reliable can be
established through co-operative and dstributed testing.
Thisis smilar to how public domain code such as Linuxis
developed and maintained, except that the reliance put on
code ould be based on explicit rather than implicit
information. Such a processis very close to that used in
the natural science — hypotheses are tested in experiments
so that only those hypatheses that survive many attempts
at disconfirmation are trusted. The process of natural
science has a goodreoord at producing wseable knowledge
that is applicable to complex constructions (eg.
spacecaft). There is no reason why a similar kind of
reliability can’t be built up for software.

7. An Example: Evolutionary Algorithms

The properties of many seach agorithms are not
amenable to formal proof due to their stochastic nature
and yet are being applied in complex MAS — eg. tag-
based evolution for the mntrol of loading agents[11].

The “No Free Lunch” theorems [21] tell us that, in
general, no search algorithm will be better than any other.
The moral of thisisthat to gain any efficiency one has to
exploit some spedfic properties of the dass of seach

4 Seefurther unit tests[1].



spaces one is concerned with. Further, the stochastic
nature of many seach algorithms means that proving their
properties is unlikely (exped in artificially simple caes).
Rather thisis primarily an empirical matter.

If the de and spedficaion for such a seach module
were published along with a database of hypotheses of
average and/or worst case performance w.r.t. different
clases of problem (aong with confidence statistics,
parameter settings concerning size dc.), then software
engineas who wished to use it in their system would be
able to make evidence-based judgements on its suitability
for their purposes. Users or acalemics might wish to
either extend this database of results to new classes of
problems or parameter ranges 9 as to aid enginees or,
aternatively, to seek to disconfirm them by careful
experiment. Some might dare to make ‘second-order’
hypatheses about the properties of problem classes that
results in certain minimum levels of performance These
meta-hypotheses would then be themselves subjed to
experimental investigation.

To return to our example of a GA, an entry in the
database of hypotheses might be of the form: for a
random problem spacewith a single solution of sizen, a
GA with mutation of 10%, size m, will find the solution
with probability distribution: D(n, m, t), where t is the
number of generations.

At the moment although archetypal fithess landscgpes
for which GA variants are postulated, there is no
systematic recording of the anditions of application of
hypotheses for others to refer to. This impedes the use of
these dgorithms by others.

8. Conclusion

The limitations of formal methods have been known
since Godel. We should not be atempting to formally
medanise the programming process — this is doamed to
fail except in the simplest of cases. Rather we should seek
scientific foundations for agent systems — that is
foundations based on experimental method. Althoughthis
means that we will have to give up the ill usion that we can
fully understand our own code, it does offer the red
possbility of reliable software systems. To suppat this
we will have to improve the methoddogy and technology
for testing and adapting software (‘90%' of any software
projed) to match (or reduce) the dfort devoted to the
‘10%' — the spedfication and implementation of MAS.
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11. Appendix —Proadf Outlines

In the outlines below we use some standard results in
reaursive function theory, which we quote from [6].

Let the spedficaion language, L, be that of a standard
first order clasdcd logic with arithmetic: having symbadls:
0,1+ x,=00-,010 -, aswel asvariables: x, y, z,

. and bradkets (al with the standard semantics). To
formalise the programming and cheding problems we
need to effedively enumerate statements in this language:
Si, S, etc.; and programs: Py, Py, etc.. Py(y) represents the
functions that results from program with index x applied to
input y; if the program halts it will output the value Py(y)
and Py(y)! z = ‘Py(y) hdlts with resulting value z'. We use
the following ([6] page 145) due to Godel [12]:

Suppee that M(Xy,...,X,) iS a deddale predicate.
Then it is posdble to construct a statement o(Xy,...,X,) Of
L that isa formal courterpart of M(xy,...,X,) in this snse:
for any al,...anCN: M(Xy,...,X,) hadsiff o(x,...,X,) does

Now the predicae Hn(X,y,z,t) = ‘Py(y) hats in t or
fewer steps resulting in the value Z', is deddable ([6] page
88), so by the @ove there is a statement h(x,y,zt) in L
such that H(x,y,z,t) is true iff h(x,y,zt) is. So define SH,
as [(Z00(h(x,y,zt))Ix<nCy<n. The dfediveness of the
enumeration of statements in L means that there is a
computable function 8(n) such that Sg(n) is SH..

PH,, is defined as a program that implements an nxn
lookup table whose entries are 0 or 1, where the number at
column number x and row y is 1 if Py(y) halts and O
otherwise. This is computable by the Church-Turing
Thesis ([6] page 67) due to itsfinite nature.

There is no computable function, PT, such that for all
nandx,ysn, Perm(X,y)=1if P,(y) halts (and O ow).

Permaxxy)(X:¥)=1 if Px(y) halts and O if it does not.
PPT(max(x,y))(X!y):LIJZU(PT(maX(va))IX!y)v where qJZU is the
universal binary function which is computable ([6] page
86). If T was computable then Y%, (PT(max(x.y))X.y)
would also be, but this deddes the halting problem which
isimpossble [18].

There is no computable function, T(n), such that if
binary predicate, S,[0L then Pr((y) ! ziff Si(y,2) holds.

Suppase there was guch, then T(68(n))=PT (n) would be
computable, which would contradict the previous lemma

There is no computable function, C, such that
C(n,m)=1iff, [,z (Pa(y) ! ziff Su(y,2)) hdds (o.w. 0).

Let: PPH,;, PPH,, etc. be a1 enumeration of
programs that implement all possble nxn—{0,1} lookup
tables. Now by the dfedivenessof program enumeration
and the Church-Turing thesis there is a @mputable
function: @(n,m) such that Py m) is PPHnm. Now suppaose
there was such a C, then pn(C(@(max(x,y),n),6(max(x,y)))
is computable (where W is the minimisation function 10
page 43-45) but also the function T(n) —a mntradiction.

GASP machines can emulate any Turing Machine.

The dass of Turing madines is computationally
equivalent to that of unlimited register machines (URMY)
([6] page 57). That is the dassof programs with 4 types
of instructions which refer to registers, Ry, Ry, €tc. which
hold pcsitive integers. The instruction types are: S,
increment register R, by one; Z,, set register R, to G, Cy, m,
copy the number from R, to Rn (erasing the previous
value); and Jnmg, if Ri=Rm jump to instruction number q.
This is equivalent to the dassof AURA programs which
just have two types of instruction: S, increment register
R, by one; and DJZ,q, deaement R, if this is non-zero
then if the result is zero junp to instruction step q [15].
Thus we only need to prove that given any AURA
program we can simulate its effed with a suitable GASP
system. Given an AURA program of m instructions: iy, i»,
..., im Which refers to registers Ry, ..., Ry, we @nstruct a
GASP system with n+2 agents, ead of which has m plans.
Agent An. is basicdly a dump for discarded tokens and
agent An., remains zero (it has the singe plan: (Gpy,
Jar111))- Plan s (sO{1,....m}) in agent number a
(a{1,...,n}) is determined as follows: there ae four
cases depending on the nature of instruction number s:

1. isisSy plansis (Jasrst1);

2. isisS, where bza: plan sis (G, Jasrisrd);

3. isisDIZ.q plan sis(Gni1, Gne1, Jagst);

4. i5isDJZ,q where bza: plan sis (G, Jagst1)-

Thus eat plan s in ead agent mimics the dfed of
instruction s in the AURA program with resped to the
particular register that the ayent corresponds to.



