
The Behavior Oriented Design of an Unreal Tournament
Character

Samuel J. Partington and Joanna J. Bryson

Department of Computer Science, University of Bath, Bath BA2 7AY, United Kingdom

sam@samsolutions.co.uk, J.J.Bryson@bath.ac.uk

Abstract. This paper presents a case study for using a relatively recently devel-
oped methodology, Behavior Oriented Design, to develop an Intelligent Virtual
Agent (IVA). Our usability study was conducted in Unreal Tournament using the
game Capture The Flag. The final agent displays reasonably competent behav-
ior: she is able to pursue multiple goals simultaneously and produce well-ordered
behavior.

1 Introduction

This paper presents a case study of the application of a recently-established methodol-
ogy for developing complex humanoid agents to the problem of building a game agent.
The methodology is Behavior Oriented Design [7, 8]. The game is Unreal Tournament
[12], using the Gamebots interface [13].

We begin this paper with some background description of both the game and the
development methodology. Then we describe the development of the robot, highlighting
the elaboration of its action-selection network as the agent becomes more complex.
This strategy is taken because it is fairly intuitive, since action selection determines the
priorities of an agent. However, Behavior Oriented Design is at least as much about
building the behavior objects that actually control the agent’s actions, perception and
memory as it is about the problem of action selection. The final section goes into detail
about the trickier elements of building behavior for this agent, and shows how these
problems interact with the problem of action selection.

2 Background

2.1 The Game

This case was conducted using the Capture the Flag game-mode of Unreal Tournament
(UT). Unreal Tournament [12] is a First-Person Shooter (FPS) game. As the name sug-
gests, the viewpoint adopted by the player in FPS games is that of the character he or
she is controlling: the player sees the world through the character’s eyes. The single-
player version of Unreal Tournament pits the human player against computer-controlled
players (‘bots’) in kill-or-be-killed deathmatches spread over a wide range of expansive
3D environments. In Capture-the-Flag mode, two teams (or possibly two single play-
ers) compete against each other. Each team has a base in which their flag is located.

The object of the game is to obtain your opponents’ flag (done by running into it), and
return with it to your own flag. This counts as a flag capture. Once a specified number
of captures have been achieved, the game is won. If the opposing team captures your
flag, you must recover it before you can make a successful capture, as returning to your
base with the enemies’ flag achieves nothing if your own team’s flag is not there. Once a
player has captured a flag, s/he may be forced to drop it by being killed (using the usual
UT weaponry). The flag then lies on the ground waiting for someone (of either team)
to pick it up. If you pick up your own flag dropped by an escaping enemy, it returns to
your base instantly. Teams in CTF may be composed of human players alone, or of a
mixture of human and computer players.

2.2 The Methodology

Behavior-Oriented Design (BOD) is a methodology for complex agent construction. It
derives from the traditions of both Behavior-Based AI [2, 4, 6] and Object-Oriented
Design (OOD) [3, 10, 16] the notion of strong modular decomposition. Each module
(encoded as a class in an OO language) is semi-autonomous. The purpose of a module is
to produce and control expressed behavior, but they also encapsulate whatever memory
and perception is necessary for that behavior, and and whatever additional methods are
necessary for maintaining the state of the memory or processing the perception and
control.

Modular systems require some form of coordination between the modules to guar-
antee overall coherence for the agent and to arbitrate in cases where behavior modules
would express conflicting actions (e.g. those that require going in two directions at
once.) BOD uses Parallel-rooted Slip-stack Hierarchical (POSH) dynamic plans1 en-
coded in a script file to do this arbitration.

BOD is an iterative development methodology. The iterations begin with an initial
decomposition for the agent:

1. Specify at a high level what the agent is intended to do.
2. Describe likely activities in terms of sequences of actions. These sequences are the

the basis of the initial dynamic plans.
3. Identify an initial list of sensory and action primitives from the previous list of

actions.
4. Identify the state necessary to enable the described primitives and drives. Cluster

related state elements and their dependent primitives into specifications for behav-
iors. This is the basis of the behavior library.

5. Identify and prioritize goals or drives that the agent may need to attend to. This
describes the initial roots for the dynamic plan hierarchy (described below).

6. Select a first behavior to implement.

1 Dynamic plans were historically referred to as ‘reactive plans’, because they responded rapidly
to the environment. Unfortunately, this has lead some people to believe (falsely) that agents
that use them are notpro-active. Since our agents all have their own goals and motivations, we
have adopted this new nomenclature.

Getting the decomposition right the first time is neither critical nor expected — the
iterative process will involve refactoring this decomposition. The lists compiled during
this process should be kept, since they are an important part of the documentation of
the agent.

The heart of the BOD methodology is an iterative development process:

1. Select a part of the specification to implement next.
2. Extend the agent with that implementation:

– code behaviors and dynamic plans, and
– test and debug that code.

3. Revise the current specification.

BOD’s iterative development cycle can be thought of as sort of a hand-cranked ver-
sion of the Expectation Maximization (EM) algorithm [11]. The first step is to elaborate
the current model, then the second is to revise the model to find the new optimum rep-
resentation. Of course, regardless of the optimizing process, the agent will continue to
grow in complexity. But if that growth is carefully monitored, guided and pruned, then
the resulting agent will be more elegant, easier to maintain, and easier to further adapt.

2.3 BOD Action Selection

Dynamic plans support action selection. At any given time step, most agents have a
number of actions which could potentially be expressed, at least some of which cannot
be expressed simultaneously, for example sitting and walking. In architectures without
centralized action selection, such as the Subsumption Architecture [4] or the Agent
Network Architecture (ANA) [15], the developer must fully characterizefor each action
how to determine when it should be expressed. This task grows in complexity with the
number of new behaviors. For engineers, it is generally easier to describe the desired
behavior in terms of sequences of events.

Of course, action-selection sequences can seldom be specified precisely in advance,
due to the non-determinism of environments, including the unreliability of the agent’s
own sensing or actuation. Several types of events may interrupt the completion of an
intended action sequence. These events fall into two categories:

1. some combination of alarms, requests or opportunities may make pursuing a dif-
ferent plan more relevant, and

2. some combination of opportunities or difficulties may require the current ‘sequence’
to be reordered.

Thus the problems of action selection can be broken into three categories: things
that need to be checked regularly, things that only need to be checked in a particular
context, and things that do not strictly need to be checked at all.

BOD uses dynamic plans to perform action selection through behavior arbitration.
BOD dynamic plans provide three types of plan elements corresponding (respectively)
to the three categories of action selection mentoned above. Adrive collectionprovides
the main loop of the action selection, continuously monitoring which drive should be
attended to currently. Acompetencechecks for context-specific behaviors, and action
patterns encode true sequences.

There is a great deal more to be said about POSH action selection — most signif-
icantly the importance of prioritizing the elements of a competence in a way such that
they converge. Some of this will be elaborated below. There are also many more de-
tails of the BOD development methodology, such as heuristics for determining when
the complexity of a plan should be offloaded to a behavior, andvis versa. These details
have been previously published [7–9]. We have also previously published extensive
comparisons between BOD and related architectures [7, 9, 17].

The purpose of the present paper is to provide a case study of applying these rules.
This serves both to clarify previous publications through an additional example, and
also to illustrate the application of BOD to the important real-time domain of com-
puter games. The code for this paper was written using the Kwong [14] python-based
implementation of POSH, known as pyPOSH.

3 The Bot in Action

This section presents a number of scenarios demonstrating the actions of the bot we
created (thebodbot) and relates these back to the plan files created. These scenerios
are ordered to show iterations of the development cycle, thus they show bots capable of
increasingly complex behaviour. BOD agents are generally referred to by the name of
their POSH scripts, because the script determines an individual agent’s priorities. Thus
quite different agents can use the same BOD behaviour library — indeed, testing old
scripts after elaborating the behavior library is part of the BOD iterative development
cycle.

The section’s purpose is threefold:

– To demonstrate the development of the plan files.
– To illustrate how the actions of the bot are guided by the plan file it uses.
– To give examples of the bodbot’s actions, and thus provide a starting-point for the

discussion of the development process.

The actions of the bot are illustrated by a series of commentary-style descriptions which
are interleaved with brief analysis and samples of plan code. For brevity, only particu-
larly noteworthy parts of the bots’ runs are described. The first plan is illustrated by the
actions of a male bot on the red team and remainder by the actions of a female bot on
the blue team.

3.1 Walking To Navigation Points

We started from a bot based uponposhbotfollow.lap, the plan created by Kwong [14]
for his “poshbot”.poshbotfollow.laphad the bot wandering around and following any
players he saw. Our initial plan removed the player-following element, replacing it with
one which attempted to follow navpoints (navigation-points, aka pathnodes):

Yes, the bodbot has just this moment spawned into the play-area. He’s wasting
no time running off that ledge and towards the tunnel, seems to be having a bit
of trouble on the corners, though: he’s paying more attention to that wall than

it really deserves. . . no, here he goes off again. Looks like he’s missed that vital
turning though, seems more interested in the walls of the tunnel again, no wait,
he’s coming back, takes the turning, now he’s looking around again, trying to
decide where to go. He’s finally decided and now he emerges from the tunnel.

The important part of this plan is the competence below. (The top level of the plan
hierarchy (theDrive Collection) only contains two drives at this point and thus almost
always fires this competence as the other is only triggered when the bot walks into
something.)

get-to-enemy-base⇒
〈 (at-enemy-base)⇒ goal

(reachable-nav-point)⇒ walk-to-nav-point
() ⇒ wander-around

〉
(1)

A competenceis essentially a focused set of productions, each associated with a pri-
ority as well as a trigger, and a habituation factor (described later.) The first (highest
priority) element of this competence is its goal — triggering it causes the competence
to terminate. The second element is intended to find the base, and the third to generate
wandering behavior until the second element’s trigger can be achieved.

When the bot starts up, he can see a navigation point specified as reachable (the
reachable-nav-pointtrigger returns true) and so he runs off the ledge (only a short
drop) to get to it. On the occasion of his trouble in the tunnel, the problem is that
because of the curve of the tunnel he can no longer see any navpoints. For this reason
the lowest-priority element takes over (an empty trigger means that it always fires if
no higher-priority element can). This element triggers thewander-aroundcompetence,
which causes the bot to walk around near (and into!) the walls as described. For brevity,
this competence is not given here.

3.2 A Greater Awareness of Flags

And here comes the blue bodbot now. She’s looking around, wondering where
to go next. And now she’s off, running towards the tunnel...

The “looking around” at the beginning comes from a modification to theget-to-enemy-
basecompetence, whose elements are now the following (the second is new):

get-to-enemy-base⇒
〈 (at-enemy-base)⇒ goal

(reachable-nav-point)⇒ walk-to-nav-point
() ::10⇒ rotate

() ⇒ wander-around

〉
(2)

Although two of the elements have triggers that succeed by default, the retries limit (10)
on find-nav-pointmeans that the lowest-priority element does sometimes get a chance
to fire. In the example given above, however, the rotating leads to a position where the
bot can see a reachable navpoint, and thus the first non-goal element fires.

The bodbot emerges from the tunnel, she’s almost at the enemy base now, the
prize in her sights. Yes, I think she’s going to make it! She makes a clear run
for the red flag and grabs it! Nice work there, but can she capitalise on this
early success? Remember, she’s still got to take it home.

To understand the bot’s next actions (running to the enemy flag), we need to consider
the, now extended, top-level Drive Collection,life:

〈〈
(our-flag-on-ground)⇒ go-to-own-flag

(enemy-flag-on-ground)⇒ go-to-enemy-flag
(see-enemy-with-our-flag)⇒ attack-enemy-with-flag

(enemy-flag-reachable) (have-en.-flag⊥)) ⇒ go-to-enemy-flag
(hit-object) (rotating⊥)) ⇒ avoid

(have-enemy-flag)⇒ go-to-own-base
⇒ get-to-enemy-base

〉〉
(3)

Life of course has no goal and should in theory never end, but otherwise a drive collec-
tion is much like a competence, except that its elements are checked on every iteration
of the action selection in case a different drive element should take priority. Before elab-
orating the drive collection, the main element firing had beento-enemy-base. Now, once
the bot approaches the enemy flag, however, the triggerenemy-flag-reachablereturns
true andgo-to-enemy-flagis fired instead.

Wait a minute, John, there seems to be some sort of upset at the other end of
the arena! Yes, the bodbot’s quest for glory has left her own flag dangerously
unguarded and the red player has stolen it!

To demonstrate a situation more similar to genuine Capture the Flag games, I intervened
at this point and, playing as the red player, stole the blue flag.

The bodbot’s leaving the tunnel now Clive, she’s surely going to notice that
thief any second now...
Too right, John, the bodbot rounds on the red player, running towards him and
shooting and ... it’s a success! He’s been tagged, and he drops the blue flag
to the ground where the bodbot grabs it, restoring it to its rightful place! Yes,
nothing can stop her now! She’s running back to her own flag, she’s made it
now, the blue team scores!!

In an attempt to get the blue player to notice me (and since I cannot win whilst
the other team has my own flag), I returned to the blue player’s base. The bodbot then
noticed that I had her team’s flag. Doing so meant that her current action of going home
was interrupted as theattack-enemy-with-flagDrive Collection element fired instead (it
has a higher priority) and the bot began to attack me.

Upon being tagged (killed), the red player drops the blue flag he has been carrying
and the bodbot’s current undertaking is again interrupted, as thego-to-own-flagelement
now fires (it has an even higher priority). Picking up one’s own flag returns it instantly
to the base, and the bodbot scores when returning to her own flag while carrying the
red one. The bot only moves towards her own flag as the list of navpoints leads there:
at this stage there is no specific drive to run directly there once it is reachable.

Well, that certainly was impressive. The bodbot seems to have had enough
though, she’s not going anywhere! This is remarkable, she’s just standing there!
What it she thinking?!

This final segment illustrates a problem: the expiry of out-dated state the bot holds.
In this case, the instance of thePositionsInfoclass held out-dated information about the
enemy flag, claiming that it was reachable from the bot’s current location (as that had
the been the case until the bot scored and the red flag was returned to the red base). The
bot therefore attempted to send a command to make it run directly to the enemy flag.
This was not possible from its current location, and so nothing happened.

Out of date state is one of the reasons reactive AI proponents used to avoid all
memory whatsoever, but such a strategy is pointless when an agent needs to learn and
perform complicated tasks. Under BOD, the correct thing to do is to redesign the system
on the next iteration to fix the bug.

3.3 Responding to Attack

This final scenario introduces a number of new elements, the most important being the
bot’s ability to respond when it is attacked.

For those of you who’ve just joined us, we’re seeing a fine run by the blue bod-
bot, she’s just grabbed the red flag! But where are the defence? Well, someone’s
trying to shoot her but not doing a very good job of it, that shot landed just in
front of her. The bodbot’s off again now, and ouch! That goo-explosion’s got to
hurt.

The assailant was a bot controlled by me. The goowand fires blobs of goo which stick
to walls and floors and remain there for a few seconds before exploding.

Not one to let that sort of behaviour go unnoticed, she’s looking around for
the assailant, she’s spotted him now and begins to shoot. . . ooh, right in the
stomach! Keen not to throw that lead away though, she’s now heading back to
her own base. Obviously doesn’t want another surprise attack, she’s keeping
firmly focussed on that attacker as she runs back through the tunnels.

The response to attack comes as a result of the following new Drive Collection element:

(damaged)(armed-&-ammo)(responding-to-attack⊥) ⇒ respond-to-attack (4)

This element has a higher priority than go-home, the drive element previously being
attended to, and so therespond-to-attackcompetence is triggered. Note again this is
substantially different from a normal dynamic plan — the last conjunct should not be
necessary, the response to attack should be continuous under philosophies such as sub-
sumption architecture. However, in this ‘real world’, actions not only have duration, but
can only be sent to the game engine once in a while, so the robot has to maintain state
to ensures he doesn’t flood the game engine.

In some cases, the bot will receive details of the assailant when receiving a message
from Gamebots about damage inflicted. For example, if the bot actually sees the shot
being fired. This was not the case in this example, however, and sorespond-to-attack
triggers the following competence:

find-attacker (:: 3sec)⇒
〈

(see-enemy)⇒ respond-to-visible-attacker
::1⇒ big-rotate

〉
(5)

This competence is the reason the bot looks around for the attacker: thebig-rotateel-
ement causes the bot to spin. Note the limit on retries here: the bot shouldn’t keep on
turning around as it may never be able to see the attacker. Further, this competence has
no goal, but automatically times out after 3 seconds even if it is responding, to allow
some other drive to take over the situation. In this case though, the search was success-
ful, leading to thesee-enemysense returning true and therespond-to-visible-attacker
element running. It is this element which makes the bot shoot the attacker. So the first
element in this competence is actually somewhat redundant.

Finding an attacker results in variables being set telling the bot to keep looking at
the attacker whilst performing other actions. In practice, this means that when running,
the bot instead sends a command tostrafe. Strafing is running in one direction while
facing another.

Into the home strait now, she turns around for the final sprint, she’s nearly
there, yes ... she scores! Now she’s going back to try another capture, it could
be a high-scoring game, folks!

The Drive Collection used for this scenario contains three unexciting but neverthe-
less very important elements: those which expire state. For example, the reason that the
bot now goes back for another capture rather than just standing around as before is the
following element:

freq :20sec⇒ expire-the-reachable-info (6)

The expiry elements are the highest priority in the Drive Collection. However, their
limits on frequency mean that other elements get plenty of chance to run.

4 The Development Process

The previous section focussed a great deal on action selection. This is a natural con-
sequence of the fact that the dynamic plan scripts essentially determine the goals and
motivations for an agent by ordering its priorities. However, there would be nothing to
order if it weren’t for the behaviour modules which provide the primitive action and
maintain the agent’s internal state / memory.

4.1 Behaviour Modules

The bot’s expressed behaviour is generated by four primary modules, each of which is
stored as a separate Python class:

– Movement: state to do with positions of objects, bases and the bot himself.
– Status: contains state regarding health level, weapons held and so on.
– Combat: state about who is attacking the bot, what enemies are around and what

teammates are around.
– AndyBehaviour: primitives developed for the ‘poshbot’.

Our bot makes much use of code from ‘the poshbot’, an Unreal Tournament agent de-
signed by Kwong [14] as part of the development of pyPOSH. Although this meant that
the behaviour decomposition was not as logical as it could be (many of these primitives
would be logically suited to the movementmodule instead), we felt that such a distinc-
tion between the simple behaviour of the original bot and the more advanced behaviour
of the bot I developed was useful.

There were also three behaviours dedicated primarily to maintaining internal state.
These were made individual behaviours because their state was utilised by more than
one of the other behaviours, so could not be seen as an attribute of just one of them.

– Bot Agent– general information from the Gamebots interface, also inherited from
Kwong.

– CombatInfoClass– holds state relating to combat (for example, details of the player
holding the bot’s flag), and is used by both the Movementand Combatbehaviours.

– PositionsInfo– holds state relating to the position of the bot and position of the
game objects (e.g. flags and navigation-points), and is used by Movement, Status
and Combat.

Like the primitive-complexityvs.plan-complexity tradeoff, there is also a trade-off be-
tween plan-complexity and the amount of state required. Bryson [7, section 6.5] gives
the example of an insect which could either have two plan elements for hitting some-
thing on its left side or its right, or have some state indicating which side it hit something
on, and a single plan element whose primitive uses this state to decide whether to move
left or right. The complexity of the information the bodbot required — and the need for
persistence of data — meant that the need for extra state usually prevailed in this case.

4.2 The Primitives

This section illustrates part of the development process by presenting an example of a
sensory primitive. In total, I coded 20 actions and 23 senses, and re-used the 5 actions
and 9 senses of the poshbot ([14]). The sense shown in this section,reachable-nav-
point, was chosen with a view to demonstrating interesting features of the bot, such
as its use of state, the trade-offs between plans and behaviours and so on. For ease of
explanation, I have broken it up into sections:

returns True if there’s a reachable nav point
in the bot’s list which we’re not already at
def reachable_nav_point(self):

setup location tuple
if not self.bot.botinfo.has_key("Location"):

if we don’t know where we are, treat it as
(0,0,0) as that will just mean we go to the
nav point even if we’re close by
(SX, SY, SZ) = (0, 0, 0)

else:
(SX, SY, SZ) = utilityfns.location_string_to_tuple(

self.bot.botinfo["Location"])

As part of this sense, we must already determine whether we are already close to the
navpoint we are aiming for. Our location is stored in thebotinfodictionary. However,
this is stored as a string and thus must be converted into a tuple (in this case, a triple) for
comparison, hence the call toutilityfns.locationstring to tuple. This line also provides
an example of Python’s ability to perform multiple-assignment.

If the location is not available, we can treat the bot as being at(0,0,0). This might
mean that we are actually close to a navpoint but do not realise it, but it is worth taking
this minor risk rather than doing nothing.

is there already a navpoint we’re aiming for?
how near we must be to be thought of as at the nav point
DistanceTolerance = 30
if self.PosInfo.ChosenNavPoint != None:

(NX, NY, NZ) = self.PosInfo.ChosenNavPoint
if utilityfns.find_distance((NX, NY), (SX, SY)) >

DistanceTolerance:
return True

else: # set this NP as visited
self.PosInfo.VisitedNavPoints.append((NX, NY, NZ))
self.PosInfo.ChosenNavPoint = None

It may be that the bot has already chosen a navigation point to aim for (self.PosInfo.-
ChosenNavPoint) and is currently heading there. In this case, we test whether the bot
has already got there. This uses another utility function,find distance. If the bot is not
already there, then we need do nothing more – the bot has a location to head for so
we can simply return. However, if the bot is there then we add the point to our list of
visited navpoints and clear the variable stating where we are heading for. We do not
return from the function but rather continue execution to find a new navpoint.

This extract of code is an interesting one as it is an example of something which
could be accomplished either in a primitive (as here) or by making the plan file more
complicated (i.e. adding a sense to check whether we are at the place we’re heading and
an action to clear it if we are.) There is no overwhelming advantage to either method,
it is more a matter of personal preference. The trade-off this demonstrates (between
complexity of plans and complexity of primitives) is an important one, however.

now look at the list of
navpoints the bot can see
if self.bot.nav_points == None or

len(self.bot.nav_points) == 0:
return False

If the bot cannot see any navpoints then the sense obviously fails.

else:
nav_points is a list of tuples. Each tuple
contains an ID and a dictionary of
attributes as defined in the API
Search for reachable nav points
PossibleNPs = self.get_reachable_nav_points(

self.bot.nav_points.items(),
DistanceTolerance, (SX, SY, SZ))

Theget reachablenav pointsfunction takes a list of navpoints and returns a list of
all those which are specified as “reachable” and which the bot is more thanDistance-
Toleranceunits away from2.

now work through this list of NavPoints
until we find one that we haven’t been to
or the one we’ve been to least often
if len(PossibleNPs) == 0:

return False # nothing found
else:

self.PosInfo.ChosenNavPoint =
self.get_least_visited_navpoint(PossibleNPs)

return True

The function now searches this returned list (unless it is empty) and finds the one
visited least often. This is accomplished by theget least visitednavpointfunction which
searches the list inself.PosInfo.VisitedNavPoints.

self.PosInfo.ChosenNavPointis set to this least-visited navpoint. This variable then
used by thewalk-to-nav-pointaction primitive to actually make the agent run to this
navpoint.

5 Conclusion

The final agent was one of the most complex BOD agents yet published (see further
Partington [17]).

We found that BOD offered the following key advantages:

– More focussed development. Because an Action Selection mechanism was pro-
vided it did not need to be coded.

– An ease in constructing goal parallelism. This allowed both for higher-priority
drives to interrupt lower-priority ones, and two goals to be pursued at once.

– The ability to set frequencies for pursuing goals and retries limits for attempting
actions. This made fine-tuning of the agent’s action selection relatively easy.

A number of minor problems with both pyPOSH and the methodology were discov-
ered, some of which have already been addressed in the course of this project. Others
will need to be addressed as future work. In particular, it would be useful to have a
full-blown interactive development environment for debugging POSH plans.

Some problems in agent development are still just hard, particularly navigation and
debugging the Gamebots interface itself. There is no way around needing to make elab-
orate modules for these sorts of problems. However, the fact that theyaremodules, and
can be treated distinct from other problems, did at least simplify their construction. In
general, we strongly recommend the BOD methodology.

2 “Units” refers to Unreal Tournament distance units, discussed in the Gamebots API

References

[1] Ronald C. Arkin.Behavior-Based Robotics. MIT Press, Cambridge, MA, 1998.
[2] Christian Balkenius.Natural Intelligence in Artificial Creatures. PhD thesis, Lund

University Cognitive Studies, 1995.
[3] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-

Wesley, Reading, MA, 2000.
[4] Rodney A. Brooks. A robust layered control system for a mobile robot.IEEE

Journal of Robotics and Automation, RA-2:14–23, April 1986.
[5] Rodney A. Brooks. Intelligence without representation.Artificial Intelligence, 47:

139–159, 1991.
[6] Joanna J. Bryson. Cross-paradigm analysis of autonomous agent architecture.

Journal of Experimental and Theoretical Artificial Intelligence, 12(2):165–190,
2000.

[7] Joanna J. Bryson.Intelligence by Design: Principles of Modularity and Coordi-
nation for Engineering Complex Adaptive Agents. PhD thesis, MIT, Department
of EECS, Cambridge, MA, June 2001. AI Technical Report 2001-003.

[8] Joanna J. Bryson. The behavior-oriented design of modular agent intelligence. In
R. Kowalszyk, J̈org P. Müller, H. Tianfield, and R. Unland, editors,Agent Tech-
nologies, Infrastructures, Tools, and Applications for e-Services, pages 61–76.
Springer, 2003.

[9] Joanna J. Bryson and Lynn Andrea Stein. Architectures and idioms: Making
progress in agent design. In C. Castelfranchi and Y. Lespérance, editors,The
Seventh International Workshop on Agent Theories, Architectures, and Languages
(ATAL2000). Springer, 2001.

[10] Peter Coad, David North, and Mark Mayfield.Object Models: Strategies, Patterns
and Applications. Prentice Hall, 2nd edition, 1997.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm.Journal of the Royal Statistical Society series B,
39:1–38, 1977.

[12] Epic Games. Unreal tournament, 2004.
http://www.unrealtournament.com/utgoty/, Accessed 2 November 2004.

[13] G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, Marshall,
A. N., A. Scholer, and S. Tejada. GameBots: A flexible test bed for multiagent
team research.Communications of the ACM, 45(1):43–45, 2002.

[14] Andy Kwong. A framework for reactive intelligence through agile component-
based behaviors. Master’s thesis, University of Bath, 2003. Department of Com-
puter Science.

[15] Pattie Maes. Situated agents can have goals. In Pattie Maes, editor,Designing
Autonomous Agents : Theory and Practice from Biology to Engineering and back,
pages 49–70. MIT Press, Cambridge, MA, 1990.

[16] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular struc-
ture of complex systems.IEEE Transactions on Software Engineering, SE-11(3):
259–266, March 1985.

[17] Samuel J. Partington. A critical analysis of behaviour-oriented design (BOD),
based on experiences in using it to create an unreal tournament capture-the-flag
(CTF) team,expected2005. Undergraduate Dissertation, University of Bath.

