
A Framework for Reactive Intelligence through Agile
Component-Based Behaviors

submitted by Andy Kwong

for the degree of MSc in Computer Science
of the University of Bath

September 2003



Abstract

This dissertation introduces PyPOSH, a reactive agent architecture with loadable behavioral
modules based on Bryson’s Parallel-Rooted Ordered Slip-Stack Hierarchical action selection
model. The framework utilizes a modular and object-oriented interface to behaviors built
utilizing agile and component-based methods.



Contents

1 Introduction 3
1.1 The Need for Better Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Engineering Complex Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Agile Methodologies and Rapid Development . . . . . . . . . . . . . . . . . . 5

2 Artificial Intelligence and Autonomous Agents 8
2.1 Creating Complex Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Planning and Searching for the Next Action . . . . . . . . . . . . . . . . . . 9

2.2.1 Symbolic AI and Production Systems . . . . . . . . . . . . . . . . . . 10
2.2.2 Connectionist AI and Neural Networks . . . . . . . . . . . . . . . . . 11
2.2.3 Behavioral-Based AI and Reactive, Multi-Layered Architectures . . . 12
2.2.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A brief survey of reactive architectures . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Subsumption Architecture . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Society of Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Spreading Activation Networks . . . . . . . . . . . . . . . . . . . . . 15

2.4 BOD and POSH Reactive Plans . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Requirements 17
3.1 Programming Language Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Incorporating Remote Invocation: Is the Framework Language Important? . 21
3.3 Cross Platform Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Other Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Goal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Problems Not Addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 PyPOSH: Implementing the POSH framework in Python 25
4.1 An Overview of the PyPOSH Implementation . . . . . . . . . . . . . . . . . 25
4.2 The PyPOSH Action Selection Engine . . . . . . . . . . . . . . . . . . . . . 27
4.3 The Agent Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 The Behaviors System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 The Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Agent Services: Blackboard, Schedule and Debugboard . . . . . . . . . . . . 31

1



4.6.1 The Blackboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6.2 The Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.3 The Debugboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 POSH Plan Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.1 Generic Objects and Element Objects . . . . . . . . . . . . . . . . . . 33
4.7.2 Message Objects: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Execution of Action Selection and the Drives System . . . . . . . . . . . . . 39
4.9 Controlling and Launching Agents: An Overview of The PyPOSH Agent

Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Defining Behavior: Building PyPOSH Agents 44
5.1 Cookietest: Basic behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Poshbot: Complex behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Testing and Optimization 53
6.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Profiling and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Analysis 57
7.1 The agility of PyPOSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Improving Performance and Response . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Improving Parsing and Changing Planfile Format . . . . . . . . . . . . . . . 59
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4.1 Game and Story Agents . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4.2 Robot Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Conclusion 62

A Code Listing 68

2



Chapter 1

Introduction

This dissertation presents PyPOSH, an reactive agent framework with particular emphasis
on facilitating behavior creation. Behaviors are the interface between the agent and its envi-
ronment. The agent decides on what to do through a process called action selection. Action
selection is the task of choosing the right thing to do next out of all of the possible choices
that an agent can make. This activity depends on sensing stimuli from the environment, a
service provided by behaviors. When the agent is to take an action (for example, activate
an actuator), similarly this is achieved by behaviors. These sensing and acting mechanisms
are tightly coupled. Agents in this paradigm are autonomous and complex, they arbitrate
between conflicting goals internally and require no human intervention while doing so.

PyPOSH is based on Behavior-Oriented Design (BOD) (Bryson, 2001), an agent architec-
ture that utilizes Parallel-Rooted Ordered Slip-Slack Hierarchical (POSH) action selection.
POSH agents organize primitive behaviors into elements supporting hierarchy and sequence.
PyPOSH is an implementation of POSH in Python, and allows development of these be-
havior using agile and component-based techniques. Behaviors are loaded into PyPOSH as
modules. Each behavior module provides all of the behaviors primitives that one type of
agent requires to interact with a specific environment.

The aim of the project is to create a system in which behaviors can be constructed in a
component-based manner using agile methodologies. This architecture lowers the barrier to
programming intelligent agents for new environments by making the process of programming
behaviors easier while keeping the general purpose nature of the framework. Two behavior
modules that demonstrate the abilities of the system are included with the framework. One
module is used strictly for demonstrating the composition of behaviors, while the other
module connects to an virtual environment by a interface to a commercial game server and
shows promise as a platform for research involving team strategies and human interaction.

3



1.1 The Need for Better Behaviors

Marvin Minsky recently voiced his disappointment with the field of Artificial Intelligence
(AI) (McHugh, 2003). His main concern is the lack of progress to wards human-like cognitive
abilities for robots. AI has been preoccupied with building things from the bottom up for
the last two decades. Advances have been made in reactive control (Brooks, 1986), memory
representation (Kanerva, 1988), pattern recognition (Ritter and Kohonen, 1989), and many
others. With so much exciting work happening, what is keeping AI from developing human-
like intelligence that is practical?

Our lack of fundamental understanding of human consciousness and failure in represent-
ing commonsense knowledge has certainly hindered the development of the cognitive robot.
The other side of the problem is the lack of effort integrating currently available cognitive
mechanisms onto the control architectures we already have. Although the current breed of
reactive control architectures may never model the complexities of a human equivalent, by
making them interface with different systems, we may actually produce cognitive systems
that while may not have human-like abilities are sufficiently complex enough for us to gain
new insight into this problem.

If we do need better behavior integration, what do we need to do in order to make it
happen? Building behaviors for agents is a time consuming task and will likely remain that
way until agents are able to build their own. The question becomes - How do we make it
easier and more productive for the programmer to do the job? Software engineering has
provided the answer in the form of agile methodologies and component based programming.
Together, they improve programmer productivity and software quality. PyPOSH utilizes
these concepts to provide a framework in which behaviors can be introduced easily, resulting
in making intelligent agents utilizing POSH more feasible.

1.2 Engineering Complex Scripts

The object revolution brought us data structures with type bound methods and a variety
of different mechanisms in which class of these objects relate to each other. One major
benefit of Object-Oriented (OO) programing is the emphasis that it places on code reuse.
The techniques that OO programming languages employ to simplify design and encourage
code re-use include polymorphism, dynamic binding, inheritance and the separation of class
and object instances.

These technologies are in widespread use today and Ousterhout (1998) suggested that
from observation, the average level of code reuse are in the range of 20-30%. He then proceeds
to explain the benefits of developing software with scripting languages. Scripting languages
are high-level, dynamically typed and dynamically compiled or interpreted. Compared with
system programming languages such as C, C++ and Java, these languages are very high-level
(in terms of the number machine instruction per language statement) and typically execute

4



from 100-1000 instructions/statement compared to 5-10 for system programming languages.

Ousterhout developed a set of criteria to determine the suitability of a project for using
scripting:

Does the software involve -

• Gluing together components?

• Working with diverse components and data types?

• Implementing a Graphical User Interface (GUI)?

• Requiring an extensible architecture?

Answering yes to the above questions indicate that the project would be more suitable
to implement in a scripting language. Conversely, if the software involves -

• Implementing complex algorithms and data structures.

• Manipulation of large data sets with application speed as a priority.

• Functions which are well-defined and slow-changing.

Then such projects may be better off utilizing a traditional, system programming lan-
guage.

Considering that Ousterhout developed the widely used scripting language TCL, it is no
surprise that the paper argued for increased proliferation of scripting.

Schneider and Nierstrasz (1999) suggested that the use of OO technologies is not yielding
the desired increase in productivity and code reuse due to a variety of factors. The main fac-
tor identified is the emphasis on class hierarchies and not on the interaction between objects.
They communicated the need for compositional features in languages to support object in-
teraction and introduced the experimental language PICOLA (derived from π-calculus) to
facilitate research. There are no general purpose compositional languages yet, however the
component paradigm need not be restricted to an implementation at that level. The authors
touted the advantages of using scripting languages to allow the binding of components on a
higher-level. This is the exactly the type of application that we are looking at.

1.3 Agile Methodologies and Rapid Development

Modern software development methodologies emphasize the importance of rapid prototyping
in order to create better quality software faster. Agile techniques such as Extreme Program-
ming (XP) (Beck, 1999) requires the use of prototyping to formulate ideas and takes an
iterative approach to development.

5



Proponents argue that by cutting down on the lengthy requirement specification and
design stage and moving these activities to the implementation stage yields significant in-
creases in efficiency. This is largely due to the potential to over design software components,
neglecting the knowledge that would be gained in the actual implementation process.

The core ideas in XP are to defer design work until it is absolutely necessary, to start
implementation of core features early, to build additional features through an iterative pro-
cess, to use agile/lightweight modeling and to employ unconventional programming concepts
such as pair programming.

Programmers creating software utilizing these methods would naturally perform better
with a complete set of tools that encourages development in such an environment. Ouster-
hout (1998) suggested that the answer lies in using high-level scripting languages as the glue
between components. The premise of his argument is that traditional systems programming
languages such as C, C++ and Java are too verbose. As the number of lines of code that
a programmer produces each year is roughly equal irregardless of the language used, pro-
grammers are more productive in high-level languages that lets the programmer focus on
connecting together components rather than creating them from scratch. These advantages
are provided by some of the very high-level language features. Dynamic typing and through
this improved code re-use is important as it allows the programmer for focus on the overall
design rather then getting dragged into implementation details. Concise syntax and easy to
understand code are also important features. The self documenting attribute makes it easier
for maintenance and review.

Boehm (1999) introduced a categorization system of the different types of rapid applica-
tion development (RAD) methods from a software engineering viewpoint. Of special interest
to us is Generator RAD (GRAD) and Composition RAD (CRAD).

GRAD is facilitated by very high-level languages or tools that are likely domain-specific.
An example of a GRAD tool is Agentsheets (Repenning, 1993). GRAD tools are highly
specialized and narrowly focused. Taken out of context, the system would be very inefficient.
Subsequently flexibility is low if extensions are not available (due to narrow audiences)
or hard to create (due to architectural issues). Similarly, scalability is another important
consideration due to particular implementations of such high-level tools.

CRAD describes a process in which a small team assembles a project with the general
purpose tools, connecting together ready-made components into a complete package. Com-
ponents can be be off-the-self products, middle-ware layers, web services, anything that can
be abstracted and componentized. The important piece of the puzzle here is the glue or
framework that ties these individual parts together. This type of development is much more
flexible compared to GRAD, as it allows disparate components to interface with the system.
Scalability is another issue however, which depends heavily on the bottleneck, or the weakest
component in the chain.

Both Ousterhout and Boehm argues that an important prerequisite in rapid development
of flexible systems is a powerful glue mechanism for the components. An empirical study

6



on scripting languages conducted by Prechelt (2000a) found that the programming time for
scripting systems which offered these advantages is approximately one-half to one-third of
programming languages such as C and C++. He took measurements on the number of hours
that the programmer worked on and the number of lines of code that the resulting program
is in. Prechelt also stated Ousterhout’s assertion that the number of lines of code produced
per programmer per year is relatively constant and referenced it to Boehm (1981). If this is
sufficiently true, then we can estimate programming efficiency by looking at the source code.
If a program that accomplishes a equivalent task is shorter in a scripting language, then we
can reasonable assume that this programming method is more productive empirically. With
less lines needed for any particular program, the programmer has more lines left for other
tasks.

7



Chapter 2

Artificial Intelligence and
Autonomous Agents

Artificial intelligence (AI) research covers a broad range of topics, including fields such as
pattern recognition, linguistics, robotics, bio-informatics and more. Thus, the nature of AI
itself, is rarely agreed upon. Winston (1992) describes it as “The study of the computations
that make it possible to perceive, reason, act”. McCarthy (2003) states that “It is the science
and engineering of making intelligent machines, especially intelligent computer programs. It
is related to the similar task of using computers to understand human intelligence, but AI
does not have to confine itself to methods that are biologically observable.” Every researcher
seems to have their own unique answer on what AI is, and what the goals of AI research are.
If the aim of Artificial Intelligence is to create Intelligent machines, then what is intelligence,
and how do we identify it? Turing (1950) gave his answer in the form of the Turing test.
Intelligence on the other hand is much harder to define. Common sense tells us that humans
are intelligent. Can we describe animals as intelligent? What about plants?

To this, McCarthy (2003) answers, “Intelligence is the computational part of the ability
to achieve goals in the world. Varying kinds and degrees of intelligence occur in people,
many animals and some machines.”

The important concept to keep in mind is that intelligence not absolute. Is a rock boulder
intelligent? Probably not. Inanimate object do not have goals nor desires. Most lifeforms,
however, do have a goal. This goal being the propagation of genetic material through life
itself. Assuming the mindset of a evolutionary biologist, the body can be considered the
vessel that protects and ensures that survival of its genes. Intelligence, then, would become
a facilitating factor in which genes survives, and which do not. From this perspective, one
can position humans on one extreme of the spectrum, but we are by no means the only
beings possessing intelligence.

When we have a agent that has its own goals, the question is naturally how to make the
agent achieve it. The computational part of the ability to achieve goals can be viewed as the
search for the decision on what to do next. For any given agent that operates autonomously

8



in its environment, how does it decide on the action which would take further along the
path to the goal? Practically, the problem is how to model this process. This process being
Action Selection.

2.1 Creating Complex Agents

A complex agent can be thought of as an autonomous and high-level abstraction; one which
can decide on when to execute actions to achieve particular goals, and hence possess some
degree of intelligence. This decision process is a search, and how it is carried out determines
the behavior and intrinsic properties of the architecture. There are many ways to build a
complex agent, or more specifically the mind of one, and a summary of the many architec-
tures can be found in later on in this chapter. These are often called Agent architectures,
Action Selection Architectures, Cognitive Architectures or Robotic Control Architectures
depending on whether from the perspective of AI, cognitive science or multi-agent systems
although they may have slightly different definitions. We will take a view which is centered
around AI and Robotics as opposed to one which is centered around Autonomous Agents
or Multi-Agent Systems (MAS) (Wooldridge and Jennings, 1994). The agent itself is imple-
mented in software, but it may be also be the software that controls physical systems such as
actuators or sensors, as in a robot. Conversely, an agent may not interact with any external
environment at all, if the agent is to run as closed simulation.

We need to build complex agents for many reasons. The simulation of animal behavior is
essential for our understanding of natural intelligence and large set of related problems such
as modeling natural environments. Autonomous agents can be used to to complete tasks
that contains a substantial amount of complexity and requires adaptivity. We need these
agents to help us search for the best answer to a question from billions of documents, or to
explore extra-terrestrial environments in a robotic body, or to populate virtual worlds and
interact with humans.

The following parts provide an introduction on the different approaches in how complex
agents are designed and constructed. This would be accompanied by an overview on the
major architectures and methodologies.

2.2 Planning and Searching for the Next Action

Planning is the process of searching for the next action that will take us closer to an specific
goal. In essence planning is search leading to intelligence. It was once assumed in AI that
planning can be done in the same way as proving theorems - When given a full representation
of the environment in its initial and final state, we would be able to sequence the actions
necessary to achieve the goal. Furthermore, the process of planning such actions were thought
to be mathematical, in the sense that a particular problem would have a particular formal

9



solution. This approach is now referred to as conventional planning and Symbolic AI which
is explored in more detail in Section 2.2.1.

Action Selection is the process that choses which action to take according to the plan. In
reactive systems this is done at run-time as compared to traditional planning which involved
selecting actions and placing it into a sequence. A variety of action selection mechanisms
exist, each having different properties and approaching the problem from different directions.
One can argue that the term planning is obsolete, as what was originally done by planners
are now in the domain of action selection mechanisms (ASMs). However, the term reactive
planning has become almost synonymous with the action selection problem.

The primary task of action selection is to identify possible action and arbitrate between
conflicting ones. The agent or robot can only perform a limited number of operations at any
one time and has finite resources. When to focus attention on a particular action and when
to release this focus is that main determining factor of a good action selection mechanism
and a mediocre one.

2.2.1 Symbolic AI and Production Systems

With the goal being to recreate intelligence, we need to conceptualize a model for it. Symbolic
AI is the first solution to this challenge. Many of the classic successes of AI (Newell and
Simon, 1963) (Winograd, 1972), utilized high-level domain specific knowledge and reasoning.
This top-down approach rests on the notion of representation. Representation in this form
is said to be explicit. Each state, attribute or decision is internalized, categorized and stored
as a symbol.

Symbolic AI agents often have deliberative inference mechanism as they require to a
internal representation of the external environment before it can apply the relevant heuris-
tics. This is modeled on the work of Post (1943) which involved Production Systems. In a
production system, the set of all possible states is the state space. The state that a system
is currently at is the current state. The desired outcome of the system is represented as the
goal state. The central premise of production systems is that in order to achieve the goal,
the system would be required to search the state space for a path from the initial state to
the goal state.

The control architecture of these agents utilizing this mindset separates the process into
three components - sensing, planning and execution. The approach is to build a model
of the environment through the sensory system, figure out what to do next through the
planning system, and execute the action accordingly. This approach is commonly known
as the sense-plan-act (SPA) approach and sometimes described as conventional planning or
deliberative planning. Given a description of the initial state, it will try to deduce a list of
the steps needed to reach the final state. Such a list is often called an action sequence. As
the study of the organization of behaviors and processes pertaining to intelligence at the
time focused on hierarchical and sequential states, many conventional planners based their
search of action on hierarchical and ordered models. However, not all agents which utilizes

10



symbolic representation use deliberative planning on hierarchal models.

Symbolic representation may be a crucial mechanism for specific types of intelligence, and
maybe even essential as a general mechanism of intelligence for humans. However, when one
considers the practicality of representing the astronomical number of states and decisions
available to any single agent in a complex environment, there is no doubt that utilizing
explicit representation is most likely a sub-optimal method, even when the search involved
in planning is bounded. In extreme circumstances and when agent is in possible danger,
there may be no time to internalize environment state and search for a good-enough solution.
These systems would have to micromanage and integrate a variety of different components
and processes including actuators, sensors, environmental state, modeling, planning and
processing. Trying to plan through all of the different states within a moderately complex
environment is near impossible; as soon as a good-enough plan sequence has been generated,
the environmental state might already have changed.

Even with its list of failings, we can not discount the value of explicit representation.
What symbolic representation excels at is the solving of high-level or formal problems. How-
ever, not all intelligence operate on those levels. Let us say that a bicycle is out of control
and heading toward a person. What does she do? The instinctive reaction from the victim
is to evade as quickly as possible. The thought probably never got on mind. This “reaction”
is a form of intelligence. However, if the same strategy was used in playing a game of chess,
it would not provide much of a challenge.

Strict conventional planning strategies has to make certain assumptions due to the way
it solves problems. In order to find the sequence of actions leading from the initial to final
state, it is assumed that the number of states within the system from the start to the end
of a planning session is finite and manageable. Action effects are assumed to be predictable
to allow planning to occur with congruency. The world state is assumed to consistent; if
the state is modified unexpectedly, re-planning would be needed. Shakey the robot (Nilsson,
1984) is the embodiment of this. The robot would sense the environment through its different
sensors and would spend long periods formulating plans. In the middle of executing the plan,
however, Shakey would most likely discover that the environment has changed. It will then
have to painstakingly start all over again.

2.2.2 Connectionist AI and Neural Networks

Connectionist AI takes the opposite approach to production systems by modeling biological
process instead of modeling their effect. Lloyd (1989) stated, “The central idea of connec-
tionism is the cognition can be modeled as the simultaneous interaction of many highly
interconnected neuron-like units”. Aleksander (1996) furthered this by adding that con-
sciousness can be measured in degrees, and that complex artificial neural networks (ANN)
systems have their own type of “Artificial Consciousness”.

Neural Networks are very capable pattern recognition tools, and there is much ongoing
researching that area. These networks do not do away with representation altogether, but

11



instead changes the nature of this representation. Instead of a special symbol that represents
a particular concept (explicit representation), the concept is represented by the interaction
between these neuron-like nodes (distributed representation). With a number of sufficiently
complex neural networks arranged properly, it is believed that consciousness or intelligence
can result as a emergent property. As a paradigm for intelligence, studies have been focused
on modeling the behavior of the Basal Ganglia (Baldassarre, 2001a), thought to be the action
selection mechanism in nature. Recent research from (Baldassarre, 2001b) shows the use of
ANNs in performing these tasks in a environment with multiple goals.

2.2.3 Behavioral-Based AI and Reactive, Multi-Layered Archi-
tectures

A new type of architecture dominated the field from the mid 80’s onward, commonly known
as reactive planning. Reactive planning takes a distributed and concurrent approach to the
planning problem by localizing the scope of planning. A reactive system does not form
comprehensive action plans to achieve goals. Instead, actions are executed due to individual
conditions being triggered. Rather than working with the agent in its entirety, we deconstruct
it into components that has plans to react to specific states, should they arise. Linked
together, these components perform better than a monolithic system. The essence of reactive
planning is to relieve to need to form explicit symbolic representations of the environment
internally, as we only sense the information that we need for the specific action. A variety of
architectures are grouped as reactive, including Subsumption Architecture (Brooks, 1986),
Spreading Activation Networks (Maes, 1990), Extended Rosenblatt and Payton Architecture
(Tyrrell, 1993), W-learning (Humphrys, 1997) and Teleo-Reactive Plans (Nilsson, 1994).
Collectively termed as Behavior-Based AI, members of this group have at least one property
in common - Intelligence is decentralized into individual behavior modules that reacts to some
sort of trigger and connected together by some means. How there modules are organized
and connected is the defines the architecture. For example, Brooks used layers for the
Subsumption Architecture while Maes utilized non-hierarchical behavior nodes connected
together for Spreading Activation Networks.

Reactive and Behavior-oriented architectures tend to represent latent knowledge as nodes
associated with triggers, modifiers and output. Knowledge is associated to a certain situation
though one or more of these nodes. This is what constitutes the plan in the behavioral
approach, which is not necessary a comprehensive plan to achieve any particular goal.

Reactive planning architectures excel at situations when it is impossible to calculate in
advanced all possible states of the environment, as the intelligence that handles each event is
localized to the event. An example of a practical application would be in spacecraft control.
Due to the large expanses of space and the time delay for control signals to reach the craft,
deep space probes require a certain amount of intelligence to control and maintain itself in
absence of direct communication from mission control.

Other influences in the field include ethology related theories (drives, time based selec-

12



tion), integrated systems and pattern recognition/repetition system such as Pandemonium
(Selfridge, 1959), together with Cellular Automata (CA) and Artificial Neural Networks
(ANN). These techniques are often used within or above the underlying architectures. Kim
and Cho (2001) present one example of such use.

Most current agent architectures in AI research combine different methodologies into
separate components or layers. Typically these systems contains two or three layers and are
subsequently called two-layer or three-layer architectures. These architectures, in which the
bottom layers are typically reactive, posses the advantage of being task-able and reusable,
compared to earlier architectures where all control structures are expressed in static pro-
grams.

Gat (1997) described the three-layer ATLANTIS architecture as-

• The Controller layer defines multiple actions that interfaces with sensors and actu-
ators. These are sometimes termed behaviors. These behaviors run separate to each
other interfacing with their respective sensors and actuators.

• The Sequencer is tasked with selecting the right behavior to activate at a given time
and manage the execution by supplying details immediately related to the execution.
This layer performs the function commonly known as Action Selection (AS).

• The Deliberator runs separately and above the other two layers performing complex
tasks such as planning, search and other compute-intensive operations. This layer
interfaces with the sequencer by producing new plans by learning or answering queries.

2.2.4 Other Approaches

Reactive/Behavior-based and Layered architectures are by no means the only ones competing
in the field of control systems for complex agents. The field of Autonomous and Multi-Agent-
Systems is dominated by several theories such as PRS and DMARS (d’Inverno et al., 1997).
SOAR (Newell, 1990) is another example which uses symbolic representation as a basis for
creating a unified theory of cognition. Systems such as PRODIGY (Veloso et al., 1995)
contributed to the field by utilizing an integrated approach to planning and learning.

2.3 A brief survey of reactive architectures

2.3.1 Subsumption Architecture

Brook’s Subsumption Architecture (Brooks, 1986) began the transformation from traditional
AI architectures into the reactive architectures that are prevalent today. In the paper, Brooks
communicated the need for decomposing competence into different groups that would run

13



together in building a control architecture for mobile robots. These groups are then layered
and run in parallel, whereas higher-level layers would have the capability to suppress the
activity of lower layers. This attribute of allowing higher-level layers to preempt lower layers
is known as subsumption. In order for subsumption to work properly, each layer would have
to have the ability to see the state of a lower layer and operate individually and unaware of
higher-level layers.

Subsumption works through two means, inhibition and suppression. Inhibition prevents
signals from traveling to and from the sensors and actuators. Suppression works similarly
to inhibition but replaces the signals and messages with a surrogate one.

The architecture was designed so that each layer is responsible for keeping its own percep-
tion of the environment. Modules that interact with a specific component of the environment
is tied to the affected sensors or actuators. There are no system-wide structures to keep state
of the system or the environment, in fact, it is argued that the less state kept within the
system the better. The state of the environment should be sensed and reacted upon as
frequently as possible.

Brooks used the Subsumption Architecture in robotic systems successfully on many
robots. The process of decomposing intelligence into individual layers proved to be a more
natural and efficient way to represent and process knowledge when compared with traditional
architectures at least in the field of robotics.

2.3.2 Society of Mind

Minsky’s Society of Mind (SOM) (Minsky, 1986) proposes that the human mind is the
aggregate of multiple small components (or agents) that are limited in scope, that when
connected together, results in intelligence. Each of these components, although complex
in itself, can perform only relatively simple tasks. Intelligence therefore forms as emergent
behavior from the complex interaction of simple agents.

There are many components to SOM including agents, agencies and K-lines. Different
specialized agents exists to process different types information. For example memory is
handled through K-lines connecting polynemes and isonemes. An explicit topology for these
components exists but is not defined rigidly leaving the implementation of such concepts
open. Minsky’s latest work (Minsky, 2001) continues this train of thought by exploring
emotions in detail and how they relate to the SOM.

Unsurprisingly, this idea became hugely influential together with the reactive and behavior-
based school of thought. Although the book does not discuss much on implementation, the
introduction of how such tasks may be performed by the mind is enough to spark interest
in many researchers. A large collection of research is subsequently based on implementing,
extending or refuting Minsky’s ideas.

14



2.3.3 Spreading Activation Networks

Maes (1990) proposed an action selection architecture based on nodes which form a series of
links. Some of these nodes are tied to actuator/sensor loops and can be activated by external
stimuli. The links could be predecessor/successor links, conflictor links or inhibition links.
The structure of these links are non-hierarchical. Activation, an abstract quantity much
like ether, is spread among all of the nodes in the network. Due to stimuli, activation is
spread and channeled to other nodes within the network due through the predecessor and
successors links. When choosing what the current task should be, we would just pick out
the node containing the most amount of activation. The problem with this type of system
is the setting of the activation trigger and output is mangled by hand. It is hard to tune the
network to behave in a desired way.

Tyrrell’s Simulated Environment and Rosenbatt and Payton’s Architecture

Tyrell (1993) performed a comparison and analysis of Rosenblatt and Payton’s architecture
(presented as an alternative to the Subsumption Architecture) (Rosenblatt and Payton,
1989) and traditional hierarchies. Tyrrell argues that Rosenblatt and Payton’s free-flow
hierarchical organization of behaviors is a better model and supports this with evidence by
creating and running simulations of agents in his Simulation Environment (SE) (Tyrrell,
1993) that tested the performance of Action Selection Mechanisms in complex situations.

The argument by Maes that a top-down level of control exhibited by traditional hierar-
chies are bad for action selection is shared by Tyrrell. Maes approach was naturally to create
a mechanism that did not employ hierarchies at all. Tyrrell pointed out that by utilizing
a modified hierarchy similar and maybe superior result may be achieved. Rosenblatt and
Payton’s original architecture used free-flow hierarchies to address the shortcomings of the
top-down hierarchical approach termed as Hierarchical Decision Structures (HDS) through
allowing the hierarchical components to have flexibility in choosing which candidate to defer
control to.

(Tyrrell, 1993) contains an extensive comparison of action selection mechanisms by test-
ing each of them in the SE. Surprisingly, all four of the architectures tested faired relatively
poorly at first, but Rosenblatt and Payton’s mechanism fared the best after slight modifica-
tion. A noteworthy point is that the Edmund architecture (Bryson, 2000b) fared the best
overall in action selection mechanisms tested in the SE in a followup study.

W-learning

W-learning, an architecture proposed by Humphrys (1997) is based on Reinforcement Learn-
ing (RL), a type of distributed learning. RL operates through a training process that rewards
positive action and punishes negative or undesired actions. W-learning is hierarchical in that
agents can be split into sub-agents that handle a specific part of a problem. Each sub-agent

15



is a separate entity that handles it own learning. Individual agents then suggest a W-value
depending on the state of the system and their previous actions. The parent just picks the
sub-agent with the highest W value. Each time this cycle is complete, agents reevaluate the
choices that the system made and form a new w-value with regard to their own goals to
prepare for the next cycle.

2.4 BOD and POSH Reactive Plans

Bryson (2000b) argues that some degree of hierarchy exists in intelligent search and proposes
that fully reactive planning would benefit from introducing a limited degree of hierarchical
control. This approach is similar to the organization of behaviors advocated by Brooks
(1986) and Tyrrell (1993). Partially based on her previous thesis, she developed Behavior
Oriented Design (BOD) (Bryson, 2001), an architecture and methodology that combines
hierarchical reactive planning and modular semi-autonomous behaviors to produce a layered
system with emphasis on sequencing and action selection. The methodology portions are
concerned with the process of behavioral decomposition and iterative development of the
behaviors.

In the BOD model, parallel behaviors control how a BOD agent behaves, and when
the behavior is expressed is controlled by the action selection mechanism. POSH (Parallel-
rooted, Ordered Slip-Stack Hierarchical) reactive plans convey the information necessary for
action selection to operate. Here are a list of POSH element types -

• Action patterns are simple ordered sequences of actions that perform a task, but also
allow parallel ordering of elements.

• Competences are a collection of unordered prioritized actions (as Competence Ele-
ments) related to performing a task. These child actions have their own trigger for
activation. These elements are derived from basic reactive plans (BRP).

• The Drive Collection and Drives are another variation if the BRP and operates in a
similar manner to the Competence/Competence Elements. The key difference being
that each drive have a value α, which contains the currently active element under a
Drive. This feature implements the slip stack, which allow action selection to ignore
other elements within the drive until the active element has terminated. The intro-
duction of the slip stack is a performance measure that relieves the need for the whole
drive hierarchy need to be traversed for each cycle. The traversal of the drive tree only
happens when the active element of a drive has terminated.

Agents created under this architecture performed well in a variety of conditions. POSH
agents ran in Tyrrell’s (1993) Simulated Environment (Bryson, 2000a) outperformed all of
other agent architecture testing in that environment (see Section 2.3.3). Its use of Hierarchy
and Sequence helps it maintain focus in circumstances where fully parallel architectures can
not.

16



Chapter 3

Requirements

Creating an BOD agent utilizing POSH involves programming behavior and creating reactive
plans which uses them. Realistically however, the behaviors needs to be linked with and
developed in a framework that handles action selection and interpretation of plans. The
current POSH implementation supplied by Bryson (2001) is programmed in Common LISP
(CLOS). Any agent created using that implementation would have to be at least partially
implemented in the same environment.

LISP is a functional language which has a long history and a devoted following, mainly
in AI and Cognitive Psychology. Many of the techniques and features in modern scripting
languages were first pioneered in LISP. Dynamic typing is one example of this. Due to
different factors, however, the uptake of LISP was slow. LISP grew in many directions and
resulted in the splintering of efforts which lead to fragmentation of the language into multiple
dialects such as Common Lisp, Standard Lisp, euLISP, etc. The limited use of LISP as a
general programming language meant that no central repository of extension modules and
libraries were available for it. This severely limits the power of using LISP as a component
framework for integration.

Scripting languages such as Python, Ruby or Perl provides imperative/object-oriented
syntax and a large selection of components and modules. They have attracted a large base
of users with their strengths, bringing momentum and much needed support.

Decisions would have to be made with respect to the language and approach used for
the implementation. The implementation language we consider as the best candidate at
the moment is Python. Python has a strict emphasis on clear and readable code and the
language itself has a strong object-oriented foundation. With a large number of modules
and classes available for connecting components, Python is a mature scripting language and
for components which do not have a Python interface, creating new wrappers for existing
libraries in C is trivial.

Another important consideration in development is accessibility of the components. Any
problems that the programmer has in searching for ready made components (such as those for

17



data storage or for interfacing with hardware) is a hindrance to development. Languages with
a central repository of available modules, that are freely available with the minimal amount
of usage restriction is preferable. Both Python and Perl have fairly extensive libraries of
modules, although Perl’s CPAN repository is bigger by far. The number of Ruby modules
is growing but selection is more limited due to it being youngest language.

Of particular note to this discussion is the performance of scripting languages. Bangley
(2003) finds that Python is on average 20 times slower than C++ and up to 100 times as
slow in common operations. In contrast, LISP is less 2 times as slow on average when the
code was compiled. However, Prechelt (2000a) reports that in implementations of string
processing routines, the run times and other performance metrics for scripting languages
such as Python and Perl is less than a factor of 2 over similar implementations in C.

3.1 Programming Language Criteria

The language choice of the framework determines which language the behaviors need to be
implemented. This is true even with remote invocation of methods and procedures (see
Section 3.2) unless the plan representations, module organization and messages are stored
and exchanged in a data format that is totally independent from the implementation. In the
latter case, specific wrapper or translation components must be used to interface with the
standard formats, adding additional complexity to the agent.

Specifically we will consider the following language criteria in selecting the implementa-
tion language:

Clear and concise syntax is very important. Overly verbose syntax may be more powerful
and allow programmers more control over the program during execution, however, the trade-
off is more development time used in repeating common tasks. On the other hand, overly
expressive syntax leads to the problem of too much complexity in the code itself, resulting
in code that is not readable or maintainable. The use of regular expression as a syntactic
construct in Perl is one such example.

A related problem is the familiarity of the language constructs. A simple and concise
language also be familiar to a majority of programmers. Most programmers are at least
familiar with one major imperative language. Our choice should at least cater those this
style or programming.

Dynamic typing is a important part of building rapid prototypes. In languages that
support dynamic typing the system determines how variables are interpreted depending on
in which context those variables are used. It increases productivity by eliminating the need
to associate a type with a variable at compile time. For the programmer, this process (static
typing), is tedious and time consuming. Furthermore, in OO based scripting languages, the
use of dynamic types allow more code reuse by allowing child methods to overload parent
method without the concern for the type signature of the method. For example, we can

18



inherit a boat-container object from a container object that returns boat objects which can
be immediately used without typecasting.

Interpreted and dynamically compiled languages offer more flexibility in development due
to the absence of a lengthy compile process, which allows the programmer to run tests more
frequently. These languages also offer better cross-platform compatibility in many cases, as
the software runs on top of virtual machine or byte-code interpreter, the need to recompile
code for different architectures is non-existent, greatly reducing the number of problems that
can occur due to the peculiarities of different architectures.

The availability of components ready to be used is another important factor in the de-
cision. On of the method to achieve the goal is to allow the agent to use the framework to
tie together disparate components. The license and quality of these components are also an
important factor in consideration, as these attributes affect the use of the components.

3.1.1 LISP

LISP is considered as the first general purpose functional programming language. Compared
with imperative programming styles which encourages iteration and variable use, functional
programming involve defining functions and passing parameters to these functions, with
recursion being favored over iteration. However, all LISP dialects derived from the the first
version of LISP (apart from the original version itself) have standard features of imperative
languages, such as variables, assignments and iteration.

LISP was used extensively in the early development of AI. It had a several key advantages
to the its functional nature and also due to it being typeless. Most variants of LISP handles
compilation and execution in their own method, some operate on a purely interpreted level,
while others have the option of compiling to native machine code. A excellent example of
the power of LISP can be found in the GNU/Emacs editor.

Unfortunately, there were several problems with LISP that hindered the uptake of the
language outside a few specialist fields (such as AI). Firstly, the functional and recursive
nature of LISP and the extensive use of lists did not map well performance-wise to the
von-Neumann architecture. Additionally, the proliferation of imperative languages (such
as ALGOL, FORTRAN and subsequently C) meant that the syntax of and use of LISP is
largely unfamiliar to many programmers.

Due to the fragmented nature of LISP, there are many dialects of LISP that are incom-
patible with each other. Scheme is one such dialect that has gained a sizable following. One
of the major features is that Scheme treats function as first-class entities, allowing them to
be assigned to variables and to values of expressions.

19



3.1.2 Python

Python van Rossum (2003) is a general purpose, very high-level, open-source programming
language that has gained a relatively large following since its introduction in 1990. Python
has a large list of features, many of which are targeted toward increasing the productivity
of the programmer. Some of the these features include -

• Rapid development cycles due to the absence of costly compilation and linking opera-
tions.

• The dynamically typed nature of the language allows programs to be more concise and
easier to read.

• Supports Object Orient Programming, class hierarchies brings benefits such as code
re-use.

• Cross platform support due to the ability to compile to byte-code for Virtual Ma-
chines(VMs) (Hugunin, 1997) and the multiple platforms that the interpreter runs
on.

• Garbage collection and memory management comes together with the language.

• Python supports LISP like constructs such as λ functions.

• Functions, classes and modules are first class objects.

• A large collection of available components to interface with existing systems software.

• Powerful threads support, allowing components to run concurrently and separately.

• Open-source with a relaxed policy in use and distribution.

• Creating a GUI is relatively easy with high-level bindings for a variety of graphical
toolkits (GTK, qt and tk).

• Clear and familiar syntax that requires whitespace in formatting, making code easier
to read.

Python has become one of the most popular complex scripting language in use today.
Its designers have focused on readability over the development of the language. The result
is that the language maintained clear syntax even as additional features were added to the
language. This leads to code that is easier to understand and maintain. Agile methods have
been tested extensively in Python. PyUnit, the Python unit testing framework is a standard
module in the Python distribution. PyUnit is used to build unit tests which is a part of XP.

Georgatos (2002) conducted a study on the suitability of using Python for education in
a pre-university setting and raised two important points; compared with traditional imper-
ative languages, Python code achieves the same result in significantly less code and brings

20



faster development. More importantly, Python attract students attention, and raised their
enthusiasm for programming. This may be attributed to the ease of use of the language, and
the huge improvement over the existing languages taught such as Pascal.

Python is a powerful language underneath the easy-to-use syntax and supports many
advanced language features. Almost everything in Python is a first-class object, methods,
object, classes, modules can all be passed around and stored in variables. A robust run-time
exceptions model allow Python programs to handle unexpected data gracefully. By utilizing
tools such as SWIG (Beazley, 1996), wrapping around and providing access to external
libraries is quick and painless. An report on the use of Python (and SWIG) in a large-scale
scientific application is detailed by Beazley and Lomdahl (1997).

Python fits the criteria we defined in Section 3.1. However, since Python is a scripting
language, the rich functionality of the language results in a performance trade-off.

Prechelt (2000b) performed an empirical study on several scripting and systems pro-
gramming languages based on string operations. Volunteers were asked to solve a particular
programming problem in a specific programing language. The results and related measure-
ments were collected for each of these volunteers in the sample population. The results were
surprising on two fronts. First, the report established that in the average implementation,
the programs in Perl and Python lag their counterparts in C and C++, but are only slightly
slower (which is acceptable nowadays due to the abundance of processing resources). Second,
the report indicated a very substantial increase in performance when analyzing the amount
of time each programmer spent on the task, and the number of lines of resulting code. The
inclusion of built-in list and dictionary types that are implemented natively no doubt con-
tributed to the strong show as certain operations in Python, such as comparisons are much
slower than their C or C++ counterparts.

3.2 Incorporating Remote Invocation: Is the Frame-

work Language Important?

There are a number of competing component technologies that offer a framework for develop-
ing distributed and remote applications. Examples include Java-RMI, CORBA, DCOM, and
SOAP/XML-RPC. Each technology provides a different approach the the problem, includ-
ing the choice of programming language, method of remote invocation, etc. Which one to
choose depends directly on the needs of the particular project and the choice of programming
language.

As we have preliminarily settled upon the Python, we can focus specifically on the choices
that are available on the platform -

Corba (through Fnorb, an object request broker implemented in Python) is a standards
based distributed component architecture that allows language independence through pass-
ing messages between objects through brokers.

21



Python Remote Objects and DOPY are the Python versions of Java-RMI, allowing remote
Python objects to be utilized.

SOAP and XML-RPC are protocols for the development of RPC mechanisms through
XML message passing, originally built for web services, but adopted for use in many MAS
systems.

After reviewing these mechanisms, an interesting question is raised. By using a language
neutral remote invocation mechanism, can we ignore how we implement the framework al-
together? I would answer no due to several factors. Choice in programming languages is a
good thing, however, not all projects would call for the use of several different languages.
Adding a remote invocation layer would increase the complexity of the project and when
utilized introduces a non-negligible performance degradation (Davis and Parashar, 2002),
even when assuming best-case scenarios. It is a better strategy to assume that most pro-
gramming would be done in the native language of the framework and to treat remote access
as a special case. Therefore, we should optimize the system architecture for native operation.

3.3 Cross Platform Issues

There are many issues to consider for software that is to be intended to run on different
platforms. Different operating systems implement functions and features differently, and this
fact has to be taken into account even when the language environment chosen is guaranteed
to be cross platform. Issues such as timing granularity is especially important in our case
as real-time operation of action selection is required. Other differences result from the
difference in the storage of file attributes and filenames. The resulting software would have
to take into account all of these differences and provide a consistent interface for the user
and programmer.

3.4 Other Requirements

The base system must preform to a minimum set of performance requirements. Reactive
action selection should remain reactive, and would require the frequency of action selection
cycles to remain above a reasonable value. This is an especially challenging problem in very
high-level languages as data operations tend to take much longer. The other side of this
issue is the amount of computing resources that the system utilized. The aim is to keep this
number as low as possible to allow other processes to run alongside the agents.

A graphical user interface to launch and control agents is important. It would allow
developers to focus on the design of behaviors rather than constructing a user interface,
and it facilitates debugging by showing the internal structure of the agent at run-time. The
blackboard and schedule are parts of the system that should be shown at any given time
during an execution.

22



3.5 Goal Specification

The goal of the software system is to provide an complete agent framework utilizing POSH
action selection to enable development of agile behaviors. The software system must be
implemented in a programming language that meets the criteria defined in Section 3.1.
For example, dynamic typing, a large repertoire of existing components easily accessible,
clear and familiar syntax and easy code maintenance are some of the considerations for the
selection of the language used. The framework itself would then be tied to the different
components with the aid of the programming language and its features. This language that
is decided upon is Python.

Emphasis must be placed on the creation of agile behaviors. The behavior interface itself
should have structure and be well specified. The aim is to allow rapid development and
prototyping of these essential components.

The software must be able to read and load in planfiles in their current format. POSH
plan representations must be implemented in an object-oriented manner.

The Python distribution targeted is version 2.2 and above. The decision to standardize
on 2.2 is due to the inclusion of new features that were not included or less mature in previous
versions. Generators and lexical closures are examples of such features.

The resulting software must be usable and perform reasonably, whereas reasonable can
be defined as capable of operating a real-time agent or robot. The resulting action cycle
must make decisions at a frequency of 30 cycles per second or above on modern hardware.

The software must run on at least two major platforms and perform near identically.

The resulting software must also be maintainable and readable and the innards of the
system must be made clear and understandable. Documentation explaining the basic use of
the framework is a requirement.

The system should include a graphical user interface to control the creation of agents
and controlling them while in execution. Control of the agent would allow the internal state
of the system to be accessible to the user.

Remote invocation may be implemented but is not required.

In addition to the features in the reference implementation, the resulting software may
contain addition modules to aid in the development and deployment of agents built upon
the framework. Such work will allow the connection of agents built upon the framework
with components such as voice recognition (Huang et al., 1993). The final target of the
system would be to build a agent simulator in a virtual world integrating projects such as
Alice (Conway et al., 1994), robotics environments such as Pyro (Blank et al., 2003) and the
Gamebots Server (Adobbati et al., 2001).

23



3.6 Problems Not Addressed

Outside the scope of the project is the graphical user interface (GUI) to create the plans
interpreted by the POSH action selection mechanism. (Bryson, 2001) included code that
provides a basic interface for creating and editing plans. A separate project of implementing
a full interface for reading and writing POSH plans is under development at the time of
writing.

The resulting software in itself would not be an complete and integrated environment for
simulating agents, although the integration of the result with simulation, virtual reality or
robotics frameworks would bring it closer to this goal. The behavior programmer would be
provided with tools that aide the creating of the agent but those should not be the only ones
used. The programmer is expected to build upon the existing components and also build
new ones new one when the need arises.

24



Chapter 4

PyPOSH: Implementing the POSH
framework in Python

PyPOSH is a agent framework built in Python which supplies POSH action selection mech-
anism for agents. To create new types of agents in this framework, we need to create the
primitives that enable an agent to interface with that environment. These behavior prim-
itives are packaged into behavior modules, implemented in PyPOSH as Python packages.
These modules are loaded on the core system and provides a interface to an environment,
which can be real, simulated, virtual or otherwise.

An agent in PyPOSH consists of two parts, behaviors and plan representation. The be-
haviors tell the agent how to do something, the plan representation tells the agent what to
do in specific circumstances. The action selection provided by PyPOSH provides the mecha-
nism to determine when to do something. Together, they provide the necessary components
to make complex and autonomous agents. An explanation of how agents are built utilizing
PyPOSH can be found in Section 5.

We will go into detail on the design of PyPOSH in this chapter. Let us start with an
overview.

4.1 An Overview of the PyPOSH Implementation

PyPOSH provides an action selection engine augmented by dynamically loadable behavior
libraries to allow agents to interact with the environment. In addition to the basic action
selection engine, the package also includes a GUI Agent Manager that create agents and
take care of systems functions such as loading and initializing the behavior modules, and
providing a graphical interface to control and monitor these agents. It allows the user to
view the internal data structure of the agents and serves as a debugging tool. This part of
the software is described in Section 4.9.

25



Figure 4.1: This diagram shows PyPOSH components for an agent which interacts thorough
a VR environment.

Figure 4.1 shows the high-level configuration of the system for an PyPOSH agent that
interacts through a VR environment. PyPOSH runs on top of the Python environment which
is available on many popular platforms. The agent itself consists of the action selection
mechanism, the loaded behavior module and the POSH plan representations supplied by the
plan file. The behaviors interact with the VR environment through their own means.

The PyPOSH action selection paradigm is centered around a real or virtual actor, such
as a robot or a player in a game. In PyPOSH, this actor is represented by an object instance
of the Agent Class. The instance provides basic services that allow communication between
different subsystems and act as the consolidator of different subsystems within the agent by
providing a wrapper around them.

An agent is of not much use if it has no interaction with the environment. This environ-
ment is provided a dynamically loadable behavior module. This module includes code that
may define or simulate a environment, as well as procedures that specifies what the agent
can sense, and what actions it can take. For each instance of PyPOSH, only one behavior
module can be loaded. For multi-agent simulations, the use of the module allows Agents to
communicate with one another and to share a common world. Each Behavior module would
define a behavior class. Instances of this class are attached to Agents, and these instances
provides bound methods for use by the agent. Additionally, temporary state information
can be stored within these instances for use by senses and actuators. Section 4.4 visits the
topic in more detail.

26



Figure 4.2: An overview of generalization relationships between classes in PyPOSH

Now that we have agents and the primitives needed for them to reflect upon the envi-
ronment, they need to make the agent do things. The question of when to take actions and
what actions to take for an Agent is determined by the plan. This plan is supplied to agents
in the form of a planfile, which is read in at the creation of a specific agent. A representation
of this plan is stored as objects in a tree data structure within the agent itself. The plan
components are linked to the actions and senses provided by the behavior module in this
arrangement. The agent make action selection decisions by iterating over the hierarchy. The
plan structure, along with what the agent senses determine the actions which should be
executed in each particular cycle.

Figure 4.2 illustrates the generalization relationships between the classes in the action
selection engine. We will take an in-depth look at each of these components in the following
sections.

4.2 The PyPOSH Action Selection Engine

The Action Selection Engine or ASE provides the core mechanism to make decisions. The
entire system is implemented through classes. Object instances of these classes are used at
run-time. They can be grouped into the following categories -

27



Figure 4.3: Instances of the agent class collaborate with other class instances to provide
services. These relationships are shown on the graph

• The Agent Class

• Agent Services (Debugboard, Blackboard, Schedule)

• POSH Plan Representations (Generic, Sense, Action Pattern, Competence, Compe-
tence Elements, etc.)

• POSH Messages (Content, Bbitem, Prereq)

• The Behaviors System (package modules and the behavior modules)

The following subsections describes the use of these objects within the ASE and details
their relation to the system as a whole.

4.3 The Agent Class

The agent serves as the focal point for all the activities related to a single agent. Services in
the agent are typically provided by components which are object instances of other classes
attached to the agent at certain attributes. These services are created during agent ini-
tialization and include message logging (instance of Debugboard() in Agent.debugboard), a

28



blackboard to assist in action selection (instance of Blackboard() in Agent.blackboard) and
the schedule of tasks for selected actions (instance Schedule() in Agent.schedule). Addition-
ally, a special object called the behavior instance is attached after the agent object is created.
The purpose of this object and how it is attached to the agent is covered in Section 4.4.

After the the behavior instance has been attached to the agent, the agent loads the rep-
resentation of the POSH plan located in the planfile by calling the method read file(). The
parser that reads in the planfile is implemented inside that method. In memory, objects rep-
resenting the plan are created and stored in the agent temporarily. The method create tree()
arranges the temporary objects into a hierarchy by connecting together objects and functions
with the names used in the planfile representations The final result is a drive collection that
serves as the root of the decision hierarchy. All of the objects created to represent the plan
have references back to the agent which allow objects to share the blackboard, schedule and
debugboard. Our implementation is not the only way to share the data structures of the
agent. Dynamic scoping, for example, can be used to provide a similar effect in languages
such as Common LISP.

At this point the agent object is ready to execute action selection. Two methods are
provided to run start execution. We can run the action selection in the current thread by
calling execute(). Calling execute agent() starts the action selection in a separate thread.

When the agent is executing the decision cycle in a separate thread, we can use some of
the methods bound to the agent instance to control execution. Method stop execute() stops
the action selection cycle and exit() does the same with the additional side effect of issuing
a exit command to the behavior instance, effectively killing the representation of the agent
in the environment.

4.4 The Behaviors System

Behavior modules are extensions to allow the agent to interact with different external envi-
ronments and are implemented as loadable Python sub-packages under the package modules
under the root directory of the PyPOSH distribution. For each execution instance of Py-
POSH, only one behavior module can be loaded in memory at any given time (a limitation
of the current implementation). However, the user can run separate instances of PyPOSH
for different agents as different processes.

The base distribution has two implementation of behaviors, cookietest and poshbot. Chap-
ter 5 provides detailed information on how they work and the process involved in creating
additional behaviors.

The behavior module itself can be thought of as the interface between the agent mind
(provided by the ASE) and the environment. Sometimes, the module also provides the
simulated environment; the ASE does not differentiate between these uses. To the ASE, the
behaviors module is a black box that is used to interact with the environment.

29



The agent in fact does not interface with the behavior module at the module level. It
interfaces with instances of a class present within the module called Behavior. This class
provides the essential mechanisms for the ASE to tie in the primitive action and senses
provided by the behavior module. Thus, when an agent object is created, an object instance
of this class (called a behavior instance) must first be bound to the agent before the agent
can load in the plan representation from the planfile. This topic is further explored in 5.

Understanding the relationship between the agent, the behavior instance, and the behavior
module is very important. The agent object contains the behavior instance, which is provided
by the behavior module. The behavior instance is in effect a package of all of the primitives
available to the agent. It also stores the temporary state information for use by the senses
and actuators if necessary.

The behavior module exists as a sub-package or module of modules. This module is
imported before the creation of agents in the following manner -

import modules.some_behavior as behavior

However, the Agent Manager GUI does not use the above method to import the behavior
since it dynamically detects the installed modules and allows selection of the module to
load. The functions that enable this are provided by the package modules. This package
can return the modules installed in the the system, and also return the full pathname to the
plans directory (where the planfile exists) for a specific module.

From now on, all references to behavior are references to this particular behavior module.
The function init world() is called which in thurn may call other initialization routines.
These routines are normally instructions for the creation of remote connections or shared
environments.

At this point, the agent can be created. The agent is only a shell after instantiation, with
no senses or actions and no plan representation. To populate it, we bind it to a behavior
instance which is produced by calling make behavior, passing in options if necessary. Now,
the agent is ready to load the plan representation and the routine continues as described in
Section 4.3.

The behavior instance is in essence a representation of the agent in its environment.
The agent can call get sense() and get act() to retrieve primitives for interaction. The use
of an agent instance allows state to be stored for use by the primitives. Reactive agents
should minimize internal state, and one can see this as a violation of that rule (Brooks,
1991). However, the use of state is necessary in some simulations (poshbot for example,
needs somewhere to keep information from the server) and is optional in the architecture.

The primitives themselves can be located anywhere. In the included behavior module,
all of the senses and acts are methods of the Behaviors class, so that they are bound to a
particular instance of Behaviors. Although useful for illustration, this does not need to be
the case; behaviors are free to encapsulate additional services as long as the actual sense

30



and act methods are added to the dictionaries. The method for initializing primitives is the
methods init act() and init senses(), which uses the methods add sense() and add act() to
insert functions into a dictionary object that is attached to the behavior instance. Python
treats all functions and methods as first class objects, and this allows easy storage and
manipulation of functions in a LISP-like manner.

When a particular action is decided upon by the agent mind, the object instance repre-
senting the action would already have a attribute containing the reference to the particular
function or method implementing the behavior primitive as defined in the behavior instance.
This attribute can be called directly without the need for run-time lookup of primitives.

4.5 The Base Class

Everything which is stored in or kept tracked of by an Agent is derived from the Base class.
This class manages the most basic functions of object instances, handling common functions
such as initializing the link back to the parent Agent instance, and posting debug messages
back to the agent.

Currently the base class fills two roles. First, any derivative class from Base requires a
reference back to an Agent instance. Second, utilizing this link, it provides a debug method
that allows the these objects to send back messages to the debugboard of the Agent.

4.6 Agent Services: Blackboard, Schedule and Debug-

board

As explained above, the Agent instance serves as mostly a container for everything related
to that particular agent. It provide services to child objects which are linked back to the
parent agent. Most of these services are in turn provided by object instances attached to a
specific agent. The following section describes the three main services provided by the agent.

4.6.1 The Blackboard

The backboard is the central log for all decisions made by the action selection process. More
details on the workings of the action selection is detailed in Section 4.8. Each item in the
blackboard is an instance of the Bbitem class, derived from the Message class described in
Section 4.7.2.

Serving as the repository for state during decision making in the agent, elements can
check the blackboard for specific items via the tag or command attributes. This proceedure
is normally used to check for dependency information for action patterns. The method

31



find prereq() is used for this purpose exclusively, returning a True when the first instance of
a match is found.

Performance is of great concern to the blackboard. The blackboard grows depending on
two factors - the default timeout, and activity (which depends heavily on the frequency of
decision cycles). The time required to search in the list and to trim it are also dependent
on the length of the blackboard. Section 6.2 details the efforts in optimizing the blackboard
through profiling and other techniques.

4.6.2 The Schedule

The schedule keeps track of the actions to take for the current and the following cycles. An
item on the schedule is an instance of the Content class which derives from the Message
class. It has functions similar to an Bbitem instance.

Each instance of the schedule contains the Scheduler method. This method runs every
cycle and is the workhorse of the action selection mechanism. It processes actions that have
all of its preconditions met in addition to canceling requests that have timed out. There
are two versions of this scheduler, one runs on all elements, the other runs on only one
drive. The latter version is used predominantly in the system. When given a drive name, it
runs all scheduled actions related to that drive and trims off elements that have successfully
executed. It then returns the number of elements found in that drive. This information is
used for adding drives which are ready to run, but are not active and the mechanism for this
is described in 4.8.

4.6.3 The Debugboard

The debugboard is the message collection facility for an Agent instance. Messages are
emitted by processes that call the debug method on instances derived from the Base class,
or by calling the debug board directly. The board also has the concept of debug level, which
is an integer that acts as the threshold of acceptance for messages. Processes that wish to
send a message to the debugboard would supply a priority level. If the current debuglevel
is below the message priority, the message would be ignored. Through this mechanism, we
are able to control the detail level of the messages.

All object instances from classes derived from the Base class have reverse references back
to the Agent that they are associated with. The Base class also provides a debug method,
which calls the add debug method of the debugboard. This allows object instances a unified
and simple interface to send logs, results and errors to.

32



4.7 POSH Plan Representations

The POSH plan is a hierarchy represented by the drive collection at the root. Typically,
when the action selection engine is executed, this hierarchy is visited once through a cycle.
Each cycle lasts for only a fraction of a second, and the higher the number of cycles run per
second, the more reactive the agent is to the environment.

When an Agent instance is created, the POSH plan is loaded from disk through the
read file() method. Subsequently, this generates the objects that represent the plan into
memory, first as object lists sorted by the type, and finally combined together as complete
tree with a root.

There are basically two types of objects needed to represent a POSH plan. As we touched
upon in section 2.4, POSH plans consists of three types of complex structures - Competences,
Action Patterns and the Drive Collection, which can be thought of a modified competence
(although implemented as a separate class). Action Pattern elements are simple, as they
do not have additional attributes other than the order in which the elements are stored in.
However, Competences and Drive elements have special needs in that each element has its
own trigger and other attributes. Subsequently, each of these elements would require its own
object instances. These belong to the Elements branch of the class tree.

The Drive Collection contains drives, the top level elements in the heirarcy, which are
in turn linked to the competence, action pattern, or primitive they represent. Drives are
important in POSH action selection as it provides the Slip-Stack Hierarcy (the SH in POSH).
The action selection would only descend into a drive only when its trigger returns true. This
allows the system to restrict the complexity of evaluating the hierarcy to a single branch.

Messages are special objects that convey information within the system. For instance,
when an action is completed successfully, a ’done’ message is sent to the blackboard. This
message is stored as a Bbitem. However, the creation of the message involves the use of
a Content Object. Both of these objects are Message objects, and they represent state
information that is necessary for the operation of the action selection engine. A third type
of Message is a Prereq, which is used to store information in the preconditions list of a
Generic object. Together, they regulate the firing of action with respect to preconditions.
The Prereq instances specifies what needs to be done first, and the Bbitems on the blackboard
specifies what has been done already. The result is that for each prerequisite, we check the
blackboard to see if the it has been met, if so, fire the action.

4.7.1 Generic Objects and Element Objects

Generic derives from Base and also from the Content class. Instances of the Generic Class
acts represents the basic and atomic plan elements within the PyPOSH environment. Ob-
jects from this and derived classes are used to wrap around action functions, or used as
a representation of an Action Pattern, Competence, Sense or Drive Collection (see Figure

33



Figure 4.4: Generic class inheritance relationships

4.4). The class provides a collection of base attributes and methods that are common to the
derived classes and may be used or overridden.

Generic also serves as a wrapper around actions and aggregates when they are put on
the schedule. For example each Drive Element contains a Generic instance in its drive root
attribute. This Generic instance serves no purpose other than being the wrapper, allowing
the scheduling of the intended action or aggregate.

Sense

Sense object are wrappers around a specific sense function or method (the sensor / sense
primitive) provided by the Behaviors module. Senses are normally invoked as a object within
a trigger sequence. The reason that a wrapper is needed is because triggers can contain
predicates and values in addition to sensor specified. This allows the output form the trigger
function to be compared against a value with a predicate. Sense allows the object to store
this predicate and value as an attribute in the instance until the trigger method is called.
When it is called, it evaluates the sensor and compares it against the value. If the Test is
successful, a true is returned. Otherwise the trigger evaluates to false. In case where the
value is specified but the predicate is missing, then the predicate is assumed to be equality
comparison or ==.

34



Figure 4.5: The Action Pattern Class

There are triggers which do not contain a value to compare against and the Sense object
that wraps around it would not contain value and predicate information. In this case, the
exact result from calling the sensor is returned, without and tests performed.

As senses normally wraps around sensors and acts as a trigger for an element, it is called
when the element is being traversed and should not end up on the schedule.

Complex

Complex is a virtual class that ties together aggregates in the POSH system. There should
be no object instances of this class. Aggregates are objects which can contain multiple
child objects. Instances of classes derived from Complex keeps these object in the elements
attribute of the class, in the form of a list.

The Complex class defines one important method, schedule element(), which is used to
put an child object on the schedule. This object can either be a reference to an action, a
Competence Element, or an object of any class derived from Generic. When an action (a
reference to a behavior method) is passed in to be scheduled, the action is wrapped around a
Generic object before it is sent to the schedule. Otherwise, if a Competence Element object
is passed in, the object within the action attribute of the Competence Element (Which must
be derived from Generic) is copied (by using make instance()) and put on the schedule. If
the object passed in is a normal Generic object, then make instance() is called on it, and
the result placed on the schedule.

Action Pattern

Action patterns (AP) (Figure 4.5) are simple sequences and one type of an aggregate in the
PyPOSH system. They can be thought of as a list of things to do, and each item on the list

35



Figure 4.6: The Competence and Competence Element Classes

can only fire when the previous item has finished. Child elements are kept in the elements
attribute in the form of a list. Slots in this list can also contain lists which allow items of
the same priority to run parallelized.

There are two types of actions which could be applied - trigger() and fire(). When an
AP is used as a trigger sequence (ie. attached to the trigger attribute of a Drive Element
or Competence Element), trigger() is called each time the parent is traversed. Objects in
the elements attribute are in turn triggered and the combined result combined (with AND
logic) and returned. As a result, in any trigger sequence, the failure of any single trigger will
return negative for the trigger() call.

The method fire() is called with the AP is used as sequence of actions that needs to be
put on the schedule. The call puts each object form the elements attribute of the AP on the
schedule individually, together with the specific dependency requirements. For example, in
a AP with 3 elements α, β, and γ in a list one level deep, the precondition for β is α and
the precondition of γ is β. Parallel elements would share the same preconditions, and the
following elements would have all of the parallel elements as preconditions.

Competence and Competence Element

Competences are more complex aggregates with child objects (from the class Competence Element)
that are not invoked in sequence, unlike an Action Pattern. Instead, elements are ordered
by priority and invoked when a trigger sequence of that child returns True.

The Competence instance itself has a goal, which is represented by a single object of
class Competence Element which contains an Action Pattern object in its trigger attribute.
This action pattern is used as a trigger sequence, which for identification purposes we will

36



Figure 4.7: The Drive Collection and Drive Element Classes

call the goal trigger. When the fire() method is called on the Competence instance, it check
this goal first. If all of the elements in the goal trigger return True, then this Competence
has achieved its goal and need not be activated. Otherwise, it will descend into its list of
children checking that the trigger of the each child individually until one returns True. The
competence will then run that child through fire cel()

The method fire cel() effectively inserts the action attribute of the selected competence
element into the schedule and update the status of itself and return “preserve” keeping itself
on the schedule. The effect of this is that the competence will be kept on the schedule as its
child competence element is on it at the same time. However, the competence instance will
sleep until the child has finished or timed out.

Drive Collection and Drive Element

Drives are elements of the Drive Collection. Only one drive collection exists for each agent.
The drives system is implemented as a strip down version of the Competence/Competence Element
system. The drive collection itself does not handle the triggering and firing of its own chil-
dren. Currently this task is done by the driver() method of the agent for more control.
Subsequently, the Drive Collection class is mainly a data structure to keep the drives in.

Drives are represented by instances of the Drive Element class. Each drive has its own
trigger as with Competence Element instances. The difference is that during each cycle, if
drive is ready (by its trigger sequence returning True) but has nothing on the schedule, the
driver() function of the agent notices this and puts the root of the drive on the scheduler.

For more information how the drives system cycles through the object hierarchy, see
Section 4.8.

4.7.2 Message Objects:

The Message Class defines structures which carry information on a particular process or
event and has three subclasses, Content, Bbitem and Prereq. Each of the three subclasses
fills a role in the system, but Content and Bbitem provides similar interfaces while Prereq
has a stripped down attribute list for its lesser requirements.

37



The command attribute indicates the type of message to be sent.

• request

• active

• done

• cancel

The tag is used to identify messages which are sent out by specific operations. This is
especially important in determining if a prerequisite has been completed. The action is run
if the command is a “request”. Normally this attribute will contain a instance of the Generic
Object.

Content

Content instances are informational tokens used throughout the system. When an action
has been completed for example, a “done” token would be posted on the blackboard of the
agent. This is represented by a Bbitem with the command “done” and a tag that is unique
to the specific operation.. A Content instance can be return a Bbitem image of itself through
make bbitem() and the reverse is also possible.

Instances of Generic and its derived classes also require these attributes as they require a
template when creating separate Content instances to pass around or to generate messages
to the blackboard.

Bbitem

The practical difference between a Content instance and Bbitem different deals with the dif-
ferent requirements the system places on the information on the blackboard. First, Bbitem
information must be augmented with drive name to identify which drives the specific mes-
sage is associated with. Secondly, since the Bbitem instance has a finite lifespan on the
blackboard, it need to contain a timeout.

Apart from the addition of the two attributes, one important method was added to allow
the addition of a Bbitem with the command of “request” directly onto the schedule.

Prereq

A Prereq instance is used exclusively to attach dependency information to the preconditions
attribute of object from Generic or any derive class. Used as such, there is only two attributes
necessary, which is the command and tag. This information is fed into the find prereq()
method of the blackboard to identify preconditions that have been satisfied.

38



4.8 Execution of Action Selection and the Drives Sys-

tem

When the Agent has all of the POSH plan elements loaded and ready to go, we are ready
to start the loop which runs the decision cycle. There are two ways in which the loop is
executed. The method execute() runs the loop in the current thread of execution. The
method execute thread() starts a new light-weight process and runs the loop in a separate
thread. This is especially useful when using the Python shell as we can peer into the data
structures of the agent in real-time.

What both of these methods do is to call execute core(). This is the center of PyPOSH
and where all the different elements come together. The execute core() method has two loops
for two different time representations. Real-time agents use the current system time as the
basic for timekeeping, while incremented time agents use a counter that is incremented for
each decision cycle. However, the difference only affects timestamps, the timeout of messages
always use real-time.

Suppose that we have a real-time agent which is ready to run. We call execute() on it
and the agent starts running. We see the debug messages and notice that the system is
running at several hundred cycles per second. Short of running a debugger on it and setting
breakpoint everywhere, the system is complex enough that is is almost impossible see the
mechanism it used to reach the decision. An attempt is made to better explain the operation
in this section.

When execute core() is called. First it checks to see if the agent has the real time attribute
set. It is set to True (and this is done by the parse when it sees a RDC in the plan file),
so the real-time loop is selected. Now it does several things. First, it make a note of what
the current time is. This timestamp is then fed in to check bb() method of the blackboard.
check bb() is a housekeeping function that cleans Bbitem that have timed-out, and also
processes requests from the last decision cycle. Once this has been completed, the decision
cycle is ready to run.

The decision cycle is executed by the driver() method of the agent. It directly descends
into the elements list of the drive collection. These drive elements or drives are then tested
to see if they are ready by running the trigger sequence. If one is ready, we make a note of
the drive name and pass it onto the run drive()method of the schedule.

run drive() runs all of the items on the schedule that matches the name passed in. It
returns the number of items that it found. If it returned 0, then when control is passed back
to driver(), it will add the drive root to the schedule for the next cycle.

When one decision run is completed, basically we are ready to update to a new timestamp,
clean the BB and execute the decision run again. One complete iteration of this is a decision
cycle or action selection cycle.

Optionally, by setting the driver delay and delay multiplier attributes of the agent we

39



can instruct the driver() method to sleep x amount of time every y cycles. This has the
effect of setting hard limits on the number of cycle that can be achieved in each loop.

4.9 Controlling and Launching Agents: An Overview

of The PyPOSH Agent Manager

Running on top of the Python VM, PyPOSH uses facilities provided by Python to create
light-weight parallel processes allowing multiple agents running concurrently. Wax, a thin
wrapper around the cross platform wxPython (Dunn, 2003) toolkit was used. The wax
release used is distributed by the author under an open source license. wxPython is a Python
interface to wxWindows (Smart, 2003), a cross-platform native widget toolkit built in C++.
The use of this interface allows the GUI applications to operate as native applications with
native interfaces across multiple platforms including different varieties of Unix/X, Microsoft
Windows (9x, 2000 and XP) and Macintosh Operating System (8, 9 and X). The only
prerequisites for using the Agent Manager is Python and wxPython for the target system.
Wax Nowak (2003) is included with the PyPOSH distribution and does not need to be
installed globally.

The main purpose of the GUI manager is to provide a generic interface for launching
and controlling agents. Developers utilizing the PyPOSH ASE can also create custom ap-
plications that launch agents and simulations directly if they so chose to. In this respect,
the Agent Manager GUI is not a requirement for using PyPOSH. However, it provides many
common features dealing with agent management that also help illustrate the process of
interfacing with a Agent instance. New users are encouraged to test the system using the
Gui first.

On a proper Python and wxPython installation, executing the pyposh.py file in the
PyPOSH distribution starts the Agent Manager. When the application has finished loading,
the agent launcher window is displayed. Figure 4.8 is an illustration of the main launcher
screen. The system at this point has no behavior module loaded. Behavior modules are
located as subdirectories of the modules directory and are automatically detected by the
system. The combination box near the top of the launcher allows the user to select the
behavior modules desired. Only one behavior module can be loaded by Agent Manager in
one session currently. This is due to behavior modules can also serve as the state foundation
for a multi-agent environment, and this introduced a certain amount of complexity in the
process. However, there is no theoretical constraint on the ability for the system to flush a
behavior module, although every agent executing in the system would have to be killed and
destroy world() of the current behavior module called before the new module is loaded.

After a behavior module is selected, the user will load it as the active behavior by pressing
the Load Behavior button. This action activates the init world() function in the behavior.
The main purpose is to allow custom initialization code from the behavior to run. One
possible application is to provide environment initialization here. For example, this function

40



Figure 4.8: The Agent Manger showing the launcher window.

may set up an draw a board on the screen to allow subsequent agents to connect to. Once
the behavior is loaded, a list of the LAP plan files located in the plans subdirectory of the
selected behavior module is listed in the next combination box. The user is required to select
a plan from the box before it is possible to create a agent instance.

Some behavior modules may require extra information from the user before the agent can
be created successfully. The poshbot module, for example, requires three options to connect
to the Gamebots server. This information can be entered in the manner shown in Figure
4.9. Each option consists of a name/value pair and is entered in the respective text field.
Clicking on the Add Option button creates the option and displays it in the list underneath.
Double-clicking on a option stored in the list deletes it.

With the behavior module loaded, the plan file selected, and the options required to
launch the agent have been entered, the Agent Manager is now ready to create agents.
When new agent instances are created, they are attached to a separate window frame which
allows the operator extensive control over the agent. This is done by pressing the Start New
Agent Instance at the bottom of the agent launcher.

Figure 4.10 shows the agent control panel. This window allows the operator to control
the agent through the use of the command buttons located of its top left corner. When this
window is first displayed the attached agent has just been instantiated, but nothing else has
been done to it. In order to make it run, we need to take a few more steps and instruct the
agent to start making decisions. Pressing the Start Agent button connects the agent to a
new behavior instance (See Section 4.4), then process the LAP plan file into the in-memory
object tree ready for action selection, and finally starts the action selection process.

There are three buttons concerned with debug messages from the debugboard of the
agent. Show Debugboard makes a copy of the debugboard and displays it in a separate

41



Figure 4.9: Entering options in the launcher window.

Figure 4.10: The agent control panel.

42



window. The resulting text can be copied from this window to other applications. The
Show Debug Output option is a toggle and is set to on by default. When on, new messages
accepted by the debugboard of the agent are copied to the debug window in the agent
control panel. This maybe have induce a serious performance penalty when the volume of
debugboard messages are high which may be caused by setting the debug level to a high
number, indicating that low-priority debug messages are accepted by the debugboard. In
such cases, pressing the button will toggle it to the off state in which no debugboard messages
are copied to the debug window.

Change Debug Level allows the user to increase or decrease the amount of messages sent
to the debugboard and the debug window. It does this by showing a dialog and asking
the user to enter a new debug level for the agent. This debug level is described in Section
4.6.3 and is a filter that throws aways debug messages that are of a lower priority (having a
higher number) than the current debug level. This is a very useful mechanism that allows
the user to see what the agent is doing. The default debug level is 5 (and is set at the top
of posh agent.py in the root directory of the PyPOSH distribution). Interesting levels of
detail can be seen at debug levels 7 and 9.

Show Blackboard and Show Schedule shows the respective data structures from the agent.
It does this in a similar manner as with showing the debugboard, by making a copy of the
list and then printing out the string representation of the contents in a separate window.

The feature Change Delay allows the operator to set a hard limit on the number of cycles
per second of the action selection loop. It achieves the feat by introducing a small amount of
delay in each cycle, freeing up the system to do other tasks. The formula for calculating the
hard limit on the frequency is 1/t where t is the delay in fractions of a second. However, there
is a low bound limit on the smallest period in which the system can sleep for. Python on a
Linux 2.4 kernel would not sleep for less than 0.01 seconds. Therefore, the delay multiplier
was introduced to increase the range of frequency we can limit. The concept is to introduce
the delay only every x cycles. This way, we can multiply the frequency obtained by using the
delay with this value in the form of 1

t
x = f where f is the frequency. As this system does not

take in account the length of each decision cycle, the frequency approaches the processing
limits of the hardware logarithmically. Changes to these value are reflected immediately on
the agent and can be seen if the debug level is set to 7 or above.

Kill Agent sends an exit request to the agent, shutting down any connections or threads
running in the background. At the default debug level, messages would have been emitted
to either the agent debugboard and/or the debug window. The window can now be disposed
by closing it through the window manager. Closing the window at any time would invoke
the exit procedure and dispose of the window.

43



Chapter 5

Defining Behavior: Building PyPOSH
Agents

The main aim of PyPOSH is to serve as a foundation for creating agile behaviors. In this
section, we will learn how these behaviors are constructed. PyPOSH includes a behavior
specification, which is essentially a empty behavior template containing all of the components
necessary. The module cookietest is only a minimal extension of this and illustrate the basic
techniques in building behavior modules.

A more complex example is included in the form of the module poshbot which involves
networked communications with the Gamebots server running as a separate thread. In
addition to examining the structure of the module, we will use poshbot as an example tutorial
in building more complex plans.

Engineering agents in PyPOSH is a two step process. First, a behavior module is created
in order to allow the agent to interact with a specific environment in the required capacity.
Then, plans organizing these primitives into POSH elements need to be made in order to give
direction to the agent. We will explore these topics in the next two section by disassembling
the code for the two agents included in the PyPOSH distribution.

Before we begin, let us first review the structure in which behavior modules reside in the
distribution.

pyposh/

pyposh/modules/

pyposh/modules/\_\_init\_\_.py

pyposh/modules/cookietest

pyposh/modules/cookietest/\_\_init\_\_.py

pyposh/modules/cookietest/cookie.py

pyposh/modules/cookietest/plans/

pyposh/modules/cookietest/plans/cookietest.lap

44



The above shows the directory pyposh as the root of the distribution. Underneath pyposh
is the modules subdirectory. To Python this directory is special (because the presence of the
init .py file). These are called packages and are loaded as modules. The modules pack-

age provides several methods that allow the query of packages underneath its own directory
(pyposh/modules). These sub-packages are the behaviors available to the system. In the
example above, cookietest is the behavior module, and the contents of module cookietest re-
sides in pyposh/modules/cookietest/ init .py. However, this file does not do anything other
than import pyposh/modules/cookietest/cookie.py, where the real code for the behavior is
at.

5.1 Cookietest: Basic behaviors

Cookietest is a behavior that provides basic functions to allow an agent to look for a file
named “cookie” in directories. It provides one sense to tell the agent if it see it cookie in
the directory that is being visited, and one act that tell the agent to randomly change to
a subdirectory or parent directory. It will not however, change to a directory above the
directory in which the agent is run in. In addition to these two primitives, it also provide a
helper primitive named fail, which always return a false.

The file that contains all of the code for the cookietest behavior is located in py-
posh/modules/cookietest/cookie.py. This is the only file imported by pyposh/modules/cookietest/ init .py.
Developers can create multi-file behaviors by making init .py import additional files.

Take a look at the source file, the first function is init world() -

def init_world():

pass

This function gets called when the module has been loaded successfully. In our cookietest
behavior, there is no use for it. However, this might come in useful when we are creating
multi-agent simulations in which calling this may initialize a simulation world.

def make_behavior(*args, **kw):

return Behavior(*args, **kw)

This next function creates a behavior instance to attach to the agent (see Section 4.3).
This function is called a the routine does the binding, typically by the agent launcher. Make
sure you return a behavior instance here. Optionally, you can modify the function to produce
side effects if necessary.

def destroy_world():

pass

45



This function is called just before the system is about to exit. It is the final chance to
cleanup anything left around. Now that we have looked at all the functions in the module,
we can dissect the Behavior class which contains most of the interesting routines.

class Behavior(Base):

def __init__(self, agent, *args, **kw):

Base.__init__(self, *args, **kw)

self.act_dict = {}

self.sense_dict = {}

self.init_acts()

self.init_senses()

# These are behavior varibles

self.base_dir = os.getcwd()

self.cwd = self.base_dir

This is the initialization code for creating the behavior instance. You can see that the
constructor first called the init () of the Base class (which it inherits from). Because
this class is derived from Base, we can use the self.debug() method, an example of which is
available later in this section. It then proceeds to create two empty dictionaries, one for acts
and one for senses. After the dictionaries are created, it calls the two init functions and are
described in detail below. Right now all we need to know is that these function initialize the
dictionaries with the primitives, allowing the agent to access them. The next two variables
are specific to the cookietest behavior. The object gets the current working directory of this
program and assigns it to two values. We will see how it is used later on.

def init_acts(self):

self.add_act("change_dir", self.change_dir)

def init_senses(self):

self.add_sense("see-cookie", self.see_cookie)

self.add_sense("fail", lambda : False)

def add_act(self, name, act):

self.act_dict[name] = act

def add_sense(self, name, sense):

self.sense_dict[name] = sense

def get_act(self, name):

if self.act_dict.has_key(name):

return self.act_dict[name]

else:

return None

46



def get_sense(self, name):

if self.sense_dict.has_key(name):

return self.sense_dict[name]

else:

return None

These are the actual methods used to populate the dictionary. There is one action
primitive in the dictionary with the name of “change dir”, this is bound to the method
self.change dir(), we will see later on what this method does. Two senses are then added to
the dictionary, one of these is “see-cookie” which is bound to the see cookie() method of the
current class, the other is “fail”. That latter sense is bound to a nameless (lambda) method
that always returns False.

We now see that this behavior provides one action - “change dir” and two senses - “see-
cookie” and “fail”. If you have already seen the test plan file included with the PyPOSH
distribution, you may already understand how these actions are called.

def check_error(self):

return 0

def exit_prepare(self):

return True

The above methods are used by the agent to determine if the behavior is ready, and to
tell the agent to prepare to exit. They are not populated in this module, but are useful when
the behavior has to connect to external environment through sockets.

def see_cookie(self):

try:

os.stat(self.cwd+"/cookie")

except:

self.debug(8, "Cookie Not Found at " + self.cwd)

return False

self.debug(8, "Found cookie at " + self.cwd)

return True

Looking back at the init senses() method above, we can see that this method is stored
as “see-cookie” in the dictionary. Thus, this is the method that the agent will substitute
for when it sees a “see-cookie” in the planfile. It is a simple sense that only returns True or
False. When there is a file named “cookie” in the directory that we are visiting (self.cwd),
then return True. Otherwise return False. Also notice the self.debug() method which allow

47



messages to be sent back to the debugboard of the agent. The first argument to this method
is a number which tells the debugboard the priority of this message. We suggest a number
of 8 or above.

def change_dir(self):

tmplist = os.listdir(self.cwd)

dirlist = []

for x in tmplist:

if os.path.isdir(x):

dirlist.append(x)

if self.cwd != self.base_dir:

dirlist.append("..")

# We are at the basedir, but there are no directories to change to.

if not len(dirlist):

return False

result = dirlist[random.randrange(len(dirlist))]

if result == "..":

self.cwd = os.path.dirname(self.cwd)

else:

self.cwd += "/"+result

self.debug(8, "Looking for cookie in " + self.cwd)

return True

This is the method bound to the action primitive “change dir” in the dictionary. This
method does several things. First, it gets a list of filenames that exist under the directory
we are visiting (self.cwd). Then, it checks to see if each of these entries are a directory.
Directories get added to the list of directories. Now we add the parent (..) directory onto
the directory list so that it will have a equal change of visiting the parent directory as well,
but only if we are not at self.basedir (where we started in the beginning). These directories
are to be randomly picked to see which directory we will visit next (ie. change self.cwd to).
The method then changes self.cwd to reflect the new directory we are visiting.

Now that we have seen the structure of the module and primitives that it provides, let
us take a look at the planfile accompanying this behavior -

(

(C find-cookie (minutes 10) (goal((see-cookie)))

(elements ((look-for-cookie (trigger ((see-cookie False))) change_dir)))

)

48



(DC life (goal ((see-cookie)))

(drives

((get-cookie (trigger((see-cookie False))) find-cookie))

)

)

)

The drive collection for the agent is life and has the goal of “see-cookie”. This goal
is tested every cycle and as long it returns False, the agent will continue. This particular
agent only has one drive. The drive is called get-cookie and the trigger for it to run is that
“see-cookie” returning false. Every time this drive runs, it will test “see-cookie” (which in
turn calls the see cookie() method of the behavior instance), and if it returns False, then this
drive will run.

When the drive does run, it calls find-cookie, which is a competence. A competence
has its own goals and tests them in the same manner as the drive collection. So when
the competence runs, “see-cookie” gets called again. It returns False and the competence
continues as the goal has not been achieved.

The only competence element in find-cookie is look-for-cookie, which only runs when it
tests “see-cookie” again and it returns False. When it does run, it runs “change dir” which
is chained onto the self.change dir() command.

When this agent is executed, all it does is keep changing directories until it finds a file
named “cookie”. When it does the drive collection life ends and the agent will terminate.

5.2 Poshbot: Complex behaviors

Having been through the structure of a minimal agent in the previous section, this section
take a change of focus and look at a more complex agent, although from further away.
Poshbot ’s behavior instance behaviors similar to cookietest ’s although with many more senses
and acts.

def init_acts(self):

self.add_act("stop-bot", self.stop_bot)

self.add_act("rotate", self.rotate)

self.add_act("move-player", self.move_player)

self.add_act("pickup-item", self.pickup_item)

self.add_act("walk", self.walk)

def init_senses(self):

self.add_sense("see-player", self.see_player)

self.add_sense("see-item", self.see_item)

49



self.add_sense("close-to-player", self.close_to_player)

self.add_sense("hit-object", self.was_hit)

self.add_sense("fail", lambda : False)

self.add_sense("succeed", lambda : True)

self.add_sense("is-rotating", self.is_rotating)

self.add_sense("is-walking", self.is_walking)

self.add_sense("is-stuck", self.is_stuck)

It is obvious from the initialization routines that this behavior class is much bigger than
the previous one. When creating behavior modules, remember to add new primitives to the
respective init section of the behavior class. It is very easy to make the mistake of adding
sense primitives into the act dictionary and vice-versa.

There are more to this behavior than just the additional primitives. One of the things
that creating a new behavior instance does in this module is that it creates a new object
form a class called bot. This object is the representation of the bot that is connected to
the Unreal Tournament sever using the Gamebots interface (Adobbati et al., 2001) and is
beyond this scope of what we are doing here.. This object tries its best to get out of the way
most of the time to the point that it runs its own communications thread to avoid blocking
when waiting for data from the server.

def make_behavior(ip, port, botname, agent, *args, **kw):

bot = Bot_Agent(ip, port, botname)

b = Behavior(agent = agent)

b.bind_bot(bot)

b.bot.connect()

return b

We can see that the bot is attached to the behavior in the sample above. Also notice
that make behavior trims off three of the received arguments and uses it to create a new bot
instance connected to the server at ip and port supplied. Keep in mind that make behavior
can do almost anything as long as the correct behavior module is returned.

There is much more to the module than what is presented in this section including code
that does communications with the Gamebots server and maintain local state. For the sake
of simplicity, we will not visit them here.

(

(C follow-player (minutes 10) (goal((fail)))

(elements

((close-enough (trigger ((close-to-player))) stop-bot))

((move (trigger ((see-player))) move-player))

)

)

50



(C wander-around (minutes 10) (goal((see-player)))

(elements

((stuck (trigger ((is-stuck))) avoid))

((pickup (trigger ((see-item))) pickup-item))

((walk-around (trigger ((is-rotating False))) walk))

)

)

(AP avoid (minutes 10) (stop-bot rotate then-walk))

(C then-walk (minutes 10) (goal((is-walking)))

(elements

((try-walk (trigger ((is-rotating False))) walk))

)

)

(RDC life (goal ((fail)))

(drives

((hit (trigger((hit-object)(is-rotating False))) avoid))

((follow (trigger((see-player))) follow-player))

((wander (trigger((succeed))) wander-around))

)

)

)

This is the included planfile that specifies the actions that the robot would take in Unreal
Tournament. There are three drives, with hit having the highest priority, then follow and
wander having the lowest. Basically, one would expect the robot to wander only if it has
not been hit or does not see any other players nearby. When it does see a player, the robot
would follow the player. Note that the player moves faster than the bot and so that it is
possible for the bot to lose the player. When the bot does lose the player, it would resume
the wander drive and run around picking up items.

The drive hit is the top priority drive, and the result is that whenever the bot hits
something, no matter what is is doing, it will initiate the action pattern avoid which stops
the robot, makes it rotate, and calls the competence then-walk which makes sure the bot
has finished rotating before it takes a test step.

The follow-player competence keeps following the player. When the bot gets too close,
the close-enough element stops the bot. When it gets the player moves further away, the
bot would see that the sense “close-to-player” returns false and it would select the element
move and fire “move-player” which moves the bot toward the player again.

51



Figure 5.1: Unreal Tournament Window showing the Poshbot.

Figure 5.2: Poshbot Control Window.

The wander-around competence operates in a similar fashion. Notice that the goal to
wander-around is “see-player”. When that sense returns True (when a player is seen),
the competence immediately stops clearing any stray children on the schedule and allowing
follow-player to take over. Sometimes when wandering around, the bot will get stuck. When
this happens the top priority element ( stuck) gets triggered and fires the AP avoid, otherwise
if it sees items that it can pickup, it picks them up. If it is not stuck and sees nothing to
pickup, it walks straight hoping that some other element will trigger.

Figures 5.1 and 5.2 show the poshbot in operation.

52



Chapter 6

Testing and Optimization

6.1 Unit Testing

The PyUnit Unit testing framework included in the Python 2.2 distribution was used to
test specific functions and object behaviors in the system. One problem is that the system
is complex network of difference object in use, and the attachment of these object proved
very difficult for a comprehensive test plan for every single object and object combination
with the inclusion of the Agent in the testing of each POSH class introducing additional
complexities into testing.

6.2 Profiling and Optimization

Profiling was an important part in constructing the action selection mechanism. The initial
implementation performed poorly. Profiling allowed us to locate where the bottlenecks were,
which led us to reimplementing some of the performance critical parts of the system. We
used the Python’s built-in profiler module to perform this task. One point to take note of is
that the Python Profiler does not work well with threads. We executed the action selection
in the main thread in order to profile the main loop.

The cumulative times showed which procedures were causing the most trouble. In re-
sponse to the first profile, we changed the method in which the items were stored on the
blackboard. Before, items were added onto the rear of the blackboard, and we noticed that
when the method find prereq() operated on the blackboard it traversed a large portion of it.
This can be explained by the tendency of the method to be called to resolve recent prereq-
uisites, and the traversal started with the first element of the list. By reversing insertions to
the head of the blackboard, method performance increased depending on the length of the
blackboard.

53



ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 41.980 41.980 profile:0(agent.execute())

1 0.000 0.000 41.980 41.980 <string>:1(?)

1 0.300 0.300 41.980 41.980 posh_agent.py:752(execute)

5001 12.760 0.003 27.990 0.006 posh_core.py:767(check_bb)

2180697 15.060 0.000 15.230 0.000 posh_core.py:775(proc_bbitems)

5001 0.710 0.000 13.590 0.003 posh_agent.py:807(driver)

5001 0.190 0.000 8.030 0.002 posh_core.py:837(run_drive)

16279 0.310 0.000 7.800 0.000 posh_core.py:843(proc_items)

31049 0.310 0.000 5.280 0.000 posh_core.py:580(trigger)

31049 0.540 0.000 4.970 0.000 posh_core.py:583(proc_items)

32996 0.500 0.000 4.430 0.000 posh_core.py:365(trigger)

13277 0.220 0.000 3.880 0.000 posh_core.py:119(ready)

32996 0.550 0.000 3.660 0.000 posh_core.py:389(fire)

13306 0.120 0.000 3.380 0.000 posh_core.py:321(ready)

9123 3.260 0.000 3.260 0.000 posh_core.py:757(find_prereq)

32996 0.680 0.000 2.910 0.000 posh_core.py:401(sensep)

4502 0.130 0.000 2.720 0.001 posh_core.py:648(fire)

17772 0.360 0.000 1.980 0.000 posh_core.py:89(ready)

5001 0.060 0.000 1.890 0.000 poshbot_load.py:437(was_hit)

5001 1.040 0.000 1.830 0.000 poshbot_load.py:224(was_hit)

4553 0.090 0.000 1.120 0.000 posh_core.py:330(fire)

4003 0.260 0.000 1.110 0.000 posh_core.py:671(fire_cel)

One major bottleneck remains in the method check bb(). This blackboard method per-
forms several important functions and runs every action selection cycle (which runs many
times each second). Typically items on the blackboard have a timeout and check bb() re-
moves these items. It also processes items with the “request” command and adds them to
the schedule. Everything else it pretty much leaves alone. The previous code visited every
item in the blackboard, checking for timeouts and requests. This was a major performance
problem due to at least two comparisons per item with the operation, which is quick in
Python, but is especially devastating due to the size of the blackboard (often hundreds or
thousands of items) and the frequency that is runs at. However, with some manipulation of
the way the data us stored, most of these comparisons are not necessary.

A partial solution was to use two blackboards; one for normal entries, and one for re-
quests. All blackboards exist as lists under the object instance of the Blackboard class so
the existing bb list would be augmented by the bb rp list for requests. The blackboard
method add bbitem() would be modified to add the item to the respective list according to
the command attribute. Other methods were modified to search and operate on both black-
boards. The result was that now, there is no need for check bb() to compare if the command
attribute of each item is “request”; it directly processes each item in the bb rp and send
them off to the schedule.

Now that we have solved one-half of the problem, we still have the timeout comparisons

54



for each item which is still costly. The solution to this is achieved by recognizing that time is
linear. Thus, we can sort the items by timeout and operate from one end of the list removing
items which has timed out until the first item which has not timed out has been encountered.
Then we just need to delete all items up to that point. For larger lists, this process can be
accomplished even more quickly by implementing some sort of binary search. However, the
problem is that sorting the code still requires processing each item and that the sorting itself
is a performance bottleneck. There are two options to overcome this problem. First, we
can sort the list when items are added on to it. Second, we can use a specific properly of
Python with its extremely fast built-in sort mechanism implemented in C. However in order
to do this, we need to employ a special technique named the Guttman-Rosler Transform
(Guttman and Rosler, 2003) (a special case to the Schwartzian Transform) which presents
the data in a format that the internal Python sort implementation can use. It turned out
that using the built in search was faster and that route was chosen.

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 21.220 21.220 profile:0(agent.execute())

1 0.000 0.000 21.220 21.220 <string>:1(?)

1 0.650 0.650 21.220 21.220 posh_agent.py:805(execute_core)

1 0.000 0.000 21.220 21.220 posh_agent.py:786(execute)

5150 1.390 0.000 18.730 0.004 posh_agent.py:894(driver)

5150 0.440 0.000 9.690 0.002 posh_core.py:946(run_drive)

16725 0.480 0.000 9.210 0.001 posh_core.py:952(proc_items)

32145 0.650 0.000 7.820 0.000 posh_core.py:605(trigger)

32145 0.810 0.000 7.170 0.000 posh_core.py:608(proc_items)

34055 0.750 0.000 6.360 0.000 posh_core.py:385(trigger)

13924 0.470 0.000 5.310 0.000 posh_core.py:139(ready)

34055 1.020 0.000 5.240 0.000 posh_core.py:409(fire)

4482 0.350 0.000 5.110 0.001 posh_core.py:673(fire)

34055 1.330 0.000 3.780 0.000 posh_core.py:421(sensep)

18221 0.600 0.000 3.580 0.000 posh_core.py:109(ready)

5150 0.170 0.000 1.980 0.000 modules/poshbot/poshbot.py:485(was_hit)

4273 0.160 0.000 1.960 0.000 posh_core.py:350(fire)

3834 0.490 0.000 1.860 0.000 posh_core.py:696(fire_cel)

5150 1.040 0.000 1.810 0.000 modules/poshbot/poshbot.py:274(was_hit)

38328 0.640 0.000 1.680 0.000 posh_core.py:362(fire_postactions)

5150 1.080 0.000 1.580 0.000 posh_core.py:825(check_bb)

12871 0.370 0.000 1.150 0.000 posh_core.py:341(ready)

39013 0.740 0.000 1.140 0.000 posh_agent.py:101(debug)

6519 0.230 0.000 1.120 0.000 posh_core.py:319(send)

4500 0.230 0.000 1.090 0.000 posh_core.py:448(schedule_element)

27210 0.810 0.000 1.060 0.000 posh_core.py:148(__init__)

The above profiler output shows significant improvements to check bb, taking only 1.5
seconds of time for 18.7 seconds of running the action selection. Before, check bb took 27.9

55



out of the 41.9 seconds of running action selection.

The end result is that we have taken out most of the serious performance bottlenecks
in the system. There are additional minor improvements that can be made to the code
base in order to further optimize the operation, however, these optimizations would yield
diminishing returns. Substantial improvements might require a fundamental redesign of the
system. Section 7.2 touches upon this topic.

56



Chapter 7

Analysis

The previous chapters describe a framework for creating reactive agents that can be easily
extended through building lightweight component-based behavior modules. The end result
fits very well with in initial goals of the project. The process of programming the behaviors
included with the PyPOSH distribution were problem-free. As with many data intensive
programming projects in scripting, performance (as measured by the frequency of the decision
cycle) is the main drawback; acceptable performance, but not stellar and with much room
for improvement. We will explore the performance part of the equation in Section 7.2.

Note that the current implementation of PyPOSH as an action selection mechanism only
implements the action schedule model as detailed by Bryson (2001). The control loop for
running action selection without the use of scheduling has not been implemented yet.

Tested on both Linux and Microsoft Windows platforms (see Figure 7.1 for an illustration
of PyPOSH Windows XP), the system performed identically with no apparent indication
of any defects due to differences in platform. The stability and maturity of the Python
implementations contributed greatly to this. Although there were inconsistencies, such as
the different results for some operating system level functions, these were by and large
documented clearly. In fact, since the development of the system was done in a Unix-like
environment, the author was surprise that running the system on a Windows system worked

Figure 7.1: Running PyPOSH on Windows XP

57



without any additional changes to the code. Plan loading has been tested on each platform
with good results and no errors.

The development of the poshbot behavior module highlights the success of building agents
within the architecture. There is centralized representation of the agent in the behavior
interface through the behavior instance. This allows us to keep the necessary amount of
state information required by the nature of the communications model between he bot and
the server. It goes beyond just providing agile behaviors, to providing agile behavior objects
that increases the clarity of the code.

Much of the complexity in building an agent resides in solving problems in the low-
level behaviors. Poshbot, for example, required specific instructions on how to calculate real
distance in three dimensional Cartesian space as the Gamebots interface did not provide it.
The programming of this in python is trivial. In our implementation, a string containing
the coordinate representation is directly converted to real coordinates and passed through a
function to find distance. The ease at which this is done allows for prototyping new agents
easily.

On the other hand, a fair amount of integration work that was suggested has not been
completed. Speech and Story Agents holds much promise for integration with PyPOSH and
are visited later on in this chapter.

7.1 The agility of PyPOSH

One of the big questions that is raised when evaluating a framework that is meant to bring
agility is just how agile is it. Unfortunately, we do not have definitive answer. One of the
aims of the dissertation is to show, through dissecting the procedure in creating the new
behaviors, that PyPOSH facilitates agile development of behaviors. Schneider et al. (2001)
provides a compelling argument for developing agents in component based scripting. This
is an area, that I feel is especially suited to additional work in determine the role agile
development in agent development. There have been recent attempts in dealing with this
topic in MAS (Knublauch, 2002) and further research on it is warranted, especially from the
perspective of AI.

7.2 Improving Performance and Response

The chief measure of performance is the number of decision cycles that the ASE makes in
one second. To that measure, performance of the system is acceptable on the whole. When
running an moderately complex poshbot agent connected to a Unreal Tournament server on
the same machine and with the blackboard timeout set at the default 0.5 seconds, the agent
averaged to 500 cycles per second on the main test system, running Red Hat Linux 9 on a
AMD Athlon 2200+. The much simpler cookietest agent fares much better at around 700 to

58



800 hertz.

At this level, the robot would be practical for lightweight control of real-time agents.
Improving this would most likely involve a rewrite of the classes in posh core() in C++
while preserving the Python interface. Python has standard mechanisms for this as many
computation intensive modules are built in lower level languages.

Rebuilding POSH while keeping interfaces to Python behavior may take a large amount
of work, as the current Python classes and object depend on a large amount of functionality
provided by the Python language. The real question is do we need more cycles? I believe
that the response for is fine for now. In interactive sessions with poshbot, it is evident that
the bot reacts smoothly. The only reason that might worth re-thinking implementation is
to explore implications for biological plausibility.

7.3 Improving Parsing and Changing Planfile Format

Although the performance of the parser is acceptable, improvement can be made in the form
of utilizing established methods such as parse trees. Beyond that, one idea is to have a
flexible parser system that allows loading POSH plans in different formats, such as XML.
Some insight can be gained from Aycock (1998) which describes a four layer system of
parsing in Python. In addition to this, there are packaged parser for Python that can be
used (Cotton, 2003) (Patel, 2003).

7.4 Future Work

Future work revolves around two areas, building behaviors that connect to external environ-
ments, and extending the PyPOSH models to incorporate new ideas potential improvements.
Adapting the system for learning plans is a substantial challenge. Bryson (2001) touched
upon learning and the different types of memory required for it to occur. PyPOSH at its
current form is strictly an agent framework with action selection. Integration of memory
representation in the system allows it to move toward the direction of a cognitive framework.
Of particular interest are connectionist storage mechanisms (Pollack, 1990) (Levy, 2002) ,
and sparse memory models (Kanerva, 1988).

7.4.1 Game and Story Agents

Interaction with virtual characters is one of the areas in which hold a lot promise for complex
agents. PyPOSH is already connected to the Gamebots interface to Unreal Tournament
through the poshbot module. Currently, the behavior provides enough primitives for the bot
to avoid objects, wander around and follow players. An likely extension would allow to bot

59



to play competitive through team games such as capture the flag (CTF) and other game
modes. Another prospective area to consider is the research of human behavior in limited
virtual environments such as first person shooters or role playing games. Can we program a
reactive agent perform as well as or identical to human players. If so, what is involved? The
use of these virtual environments enable the theories to be tested in a setting that is on one
hand vastly expanded when compared to limited simulation environments, and on the other
hand in levels of complexity much less than that of the real world.

Team agent environments such as Robocup (Noda and Matsubara, 1996) is also prospec-
tive environment for PyPOSH. It would allow research into strictly artificial agent based
teams strategies.

Alice (Conway et al., 1994) is a virtual world engine based on rapid prototyping ideas
similar to those presented in this paper. Based on Python, the aim of Alice is to provide
a integrated virtual reality environment where simulations can be created by rapid proto-
typing. The choice of Python is touted as method to achieve the goal of shortening the
development time. Alice can be described as a 3D authoring system written in Python. It
allows programmers and users to create interactive 3D actors, objects and environments.

An integration example of Alice and PyPOSH is the creation of a behavior library that
allows agents in PyPOSH to interact through an Alice agent. Alice is meants as a general
purpose environment for creating interactive story-oriented simulations. Example applica-
tions can range from developing simulations and modeling of agent behavior that deals with
human interaction to researching spatial and sensory components in cognition within the
simulated environment.

7.4.2 Robot Control

Pyro (Python Robotics) (Blank et al., 2003) is described as a library, environment, graphical
user interface and set low-level drivers to explore AI and robotics using the Python language.
It is a fairly complete open-source robotics development environment that can connect to
real world commercial robots in addition to virtual simulations. The project provides a
variety of components useful for implementing intelligent agents and for testing new ideas.
These components include artificial neural nets (ANN), visual and image processing, a map
representation module and evolutionary algorithms. It is a full simulation framework, and
can incorporate multiple robot simulators.

Introducing POSH action selection to the framework seems feasible. A behavior-based
control module already exists and caters for vertical and horizontal style behaviors. However,
integrating the POSH mechanism with this module may not be directly achievable. PyPOSH
is quite a large system compared to the other brain modules provided by Pyro. More research
on integrating the behaviors is required.

The advantage of integration with Pyro is that it provides a complete robotics environ-
ment that allows rapid construction and testing of robots. The completion of a POSH module

60



for Pyro would allow a additional option in the behavioral control in the environment.

61



Chapter 8

Conclusion

In this dissertation, I have introduced PyPOSH, a framework that allows the creation of
agents based on POSH action selection and plan representation principles. PyPOSH al-
lows the creation of reactive actors that interact with an environment through an interface
supplied by a dynamically loadable Python module. Engineering new agents is a two step
process involving the creation of a behavior module to handle interaction between the ac-
tion selection mechanism and the environment, and creating POSH plans that utilizes this
interface.

Design documentation for the system is found in Chapter 4, where the implementation
is described component by component. A limited form of the user manual for running the
Agent Manager is found in Section 4.9.

Secondary to the contribution of PyPOSH, this dissertation also includes a review on
creating and controlling complex agents and a short survey of recent reactive control archi-
tectures in Chapter 2.

Included with the PyPOSH framework are two sets of behavior modules. One is a minimal
test module that provides basic behaviors to allow testing of the framework. The other is a
simulated bot that interfaces with a AI research platform built on a commercially available
game engine. This behavior provides a possible starting point for research involving POSH
agents and team strategy or human interaction in a virtual environment.

A design review of the included modules and information on the creation of new behaviors
can be found in Chapter 5. The limited walk-through introduces the steps needed to create
a new behavior module for the framework and serves as a introduction to writing POSH
plans. Regrettably, additional information on behavior decomposition (see Bryson, 2001) is
not included due to time and space constraints.

Chapter 7 contains an analysis of the project and lists out possible extensions to this
dissertation in the form of building additional behaviors and extending POSH.

Agile methods and component based programming are helping programmers become

62



more productive by changing the way how code is written. PyPOSH support behavior
development through these techniques. Currently, designing behaviors is a fundamental
part of creating practical reactive agents, and this is not likely to change until substantial
further developments are made. By making the process more productive, this project hopes
to increase the speed in which intelligence can be deployed.

63



Bibliography

Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S. (2001). Gamebots: A 3d virtual
world test-bed for multi-agent research. In In Proceedings of the Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal, Canada.

Aleksander, I. (1996). Impossible Minds. Imperial College Press, London.

Aycock, J. (1998). Compiling little languages in python.

Baldassarre, G. (2001a). A modular neural-network model of the basal ganglia’s role in learn-
ing and selecting motor behaviours. In Proceedings of the Fourth International Conference
on Cognitive Modeling - ICCM-2001, pages 37–42.

Baldassarre, G. (2001b). A planning modular neural-network robot for asynchronous multi-
goal navigation tasks. In Proceedings of the 2001 Fourth European Workshop on Advanced
Mobile Robots - EUROBOT-2001, pages 223–230.

Bangley, D. (2003). The great computer language shootout.
http://www.bagley.org/˜doug/shootout/.

Beazley, D. and Lomdahl, P. (1997). Feeding a large scale physics application to python.

Beazley, D. M. (1996). SWIG: an easy to use tool for integrating scripting languages with
C and C++. In Association, U., editor, 4th Annual Tcl/Tk Workshop ’96, July 10–13,
1996. Monterey, CA, pages 129–139, Berkeley, CA, USA. USENIX.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison Wesley.

Blank, D., Meeden, L., and Kumar, D. (2003). Python robotics: An environment for explor-
ing robotics. In SIGSCE03.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
NJ.

Boehm, B. W. (1999). Making RAD work for your project. IEEE Computer, 32(3):113–114.

Brooks, R. (1986). A robust layered control system for a mobile robot.

Brooks, R. A. (1991). Intelligence without representation. Number 47 in Artificial Intelli-
gence, pages 139–159.

64



Bryson, J. (2000a). Hierarchy and sequence vs. full parallelism in action selection. In The
Sixth International Conference on the Simulation of Adaptive Behavior (SAB2000).

Bryson, J. J. (2000b). The study of sequential and hierarchical organisation of behaviour
via artificial mechanisms of action selection. Master’s thesis, University of Edinburgh.

Bryson, J. J. (2001). Intelligence by Design: Principles of Modulatiry and Coordination for
Engineering Complex Adaptive Agents. PhD thesis, Massachusetts Institute of Technology.

Conway, M., Pausch, R., Gossweiler, R., and Burnette, T. (1994). Alice: A rapid prototyping
system for building virtual environments. In Proceedings of ACM CHI’94 Conference on
Human Factors in Computing Systems, volume 2, pages 295–296.

Cotton, S. (2003). Pylr: Fast lr parsing in python.
http://starship.python.net/crew/scott/PyLR.html.

Davis, D. and Parashar, M. (2002). Latency performance of soap implementations. IEEE
Cluster Computing and the Grid.

d’Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1997). A formal specification of
dMARS. In Agent Theories, Architectures, and Languages, pages 155–176.

Dunn, R. (2003). wxpython: wxwindows for python. http://www.wxpython.org.

Gat, E. (1997). On three-layer architectures.

Georgatos, F. (2002). How applicable is Python as first computer language for teaching
programming in a pre-university educational environment, from a teacher’s point of view.
PhD thesis, Universiteit van Amsterdam.

Guttman, U. and Rosler, L. (2003). A fresh look at efficient perl sorting.
http://www.sysarch.com/perl/sort paper.html.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., and Rosenfeld, R. (1993). The SPHINX-II
speech recognition system: an overview. Computer Speech and Language, 7(2):137–148.

Hugunin, J. (1997). Python and Java: The best of both worlds.

Humphrys, M. (1997). Action selection methods using reinforcement learning. PhD thesis,
University of Cambridge.

Kanerva, P. (1988). Sparse distributed memory.

Kim, K.-J. and Cho, S.-B. (2001). Robot action selection for higher behaviors with cam-brain
modules. In Proceedings of the 32nd ISR (International Symposium on Robotics).

Knublauch, H. (2002). Extreme programming of multi-agent systems.

Levy, S. D. (2002). Infinite RAAM: Initial Explorations into a Fractal Basis for Cognition.
PhD thesis, Brandeis University, Waltham, Massachusetts.

65



Lloyd, D. (1989). Simple Minds. MIT Press, Cambridge, MA.

Maes, P. (1990). How to do the right thing. Connection Science Journal, Special Issue on
Hybrid Systems, 1.

McCarthy, J. (2003). What is artificial intelligence? http://www-
formal.stanford.edu/jmc/whatisai/whatisai.html.

McHugh, J. (2003). Why a.i. is brain-dead. Wired, 11.08.

Minsky, M. (1986). The Society of Mind. Simon and Schuster, New York. A loosley-coupled
theory of intelligence based on the model of a distributed society of interacting ’experts’.

Minsky, M. (2001). The emotion machine (draft).

Newell, A. (1990). Unified theories of cognition. Harvard University Press, Cambridge, MA.

Newell, A. and Simon, H. (1963). GPS: A program that simulates human thought. In
Feigenbaum, E. and Feldman, J., editors, Computers and Thought. McGraw-Hill, New
York. Probably the most influential paper establishing the “physical symbol system”
computational paradigm as the underlying model of intelligence used by AI.

Nilsson, N. (1984). Shakey the robot. Tech Note 323, AI Center, SRI International.

Nilsson, N. J. (1994). Teleo-reactive programs for agent control. Journal of Artificial Intel-
ligence Research, 1:139–158.

Noda, I. and Matsubara, H. (1996). Soccer server and researches on multi-agent systems.

Nowak, H. R. (2003). Wax: A high-level gui layer sitting on top of wxpython.
http://zephyrfalcon.org/labs/.

Ousterhout, J. K. (1998). Scripting: Higher-level programming for the 21st century. IEEE
Computer, 31(3):23–30.

Patel, A. (2003). Yapps: Yet another python parser system.
http://theory.stanford.edu/˜amitp/Yapps/.

Pollack, J. (1990). Recursive distributed representations. Technical report, Ohio State
University.

Post, E. (1943). Formal reductions of the general combinatorial decision problem. American
Journal of Mathematics, 65:197–215.

Prechelt, L. (2000a). An empirical comparison of c, c++, java, perl, python, rexx, and tcl.
IEEE Computer, 33(10):23–29.

Prechelt, L. (2000b). An empirical comparison of c, c++, java, perl, python, rexx, and tcl
for a search/string-processing program.

66



Repenning, A. (1993). Agentsheets: A tool for building domain-oriented dynamic.

Ritter, H. and Kohonen, T. (1989). Self-organizing semantic maps. Biol. Cybern., 61:241–
254.

Rosenblatt, J. K. and Payton, D. W. (1989). A fine-grained alternative to the subsumption
architecture for mobile robot control. In Proc of the IEEE Int. Conf. on Neural Networks,
volume 2, pages 317–324, Washington, DC. IEEE Press.

Schneider, J.-G., Lumpe, M., and Nierstrasz, O. (2001). Agent coordination via script-
ing languages. In Omicini, A., Zambonelli, F., Klusch, M., and Tolksdorf, R., editors,
Coordination of Internet Agents, pages 153–175. Springer-Verlag.

Schneider, J.-G. and Nierstrasz, O. (1999). Components, scripts and glue. In Barroca, L.,
Hall, J., and Hall, P., editors, Software Architectures – Advances and Applications, pages
13–25. Springer-Verlag.

Selfridge, O. (1959). Pandemonium: A paradigm for learning. In Proceedings of Symposium
on the Mechanization of Thought Processes.

Smart, J. (2003). wxwindows: Cross platform gui library. http://www.wxwindows.org.

Turing, A. (1950). Computing machinery and intelligence. Mind, 49:433–460.

Tyrell, T. (1993). The use of hierarchies for action selection. In Proceedings of the second
international conference on From animals to animats 2 : simulation of adaptive behavior,
pages 138–147. MIT Press.

Tyrrell, T. (1993). Computational Mechanisms for Action Selection. PhD thesis, University
of Edinburgh.

van Rossum, G. (2003). Python programming language. http://www.python.org.

Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., and Blythe, J. (1995). Inte-
grating planning and learning: The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence, 7(1):81–120.

Winograd, T. (1972). Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language. PhD thesis, Massachusetts Institute of Technology.

Winston, P. (1992). Artificial Intelligence. Addison-Wesley, Reading, MA. 3rd ed.

Wooldridge, M. and Jennings, N. R. (1994). Intelligent agents: Theory and practice.

67



Appendix A

Code Listing

68


