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Abstract

Much of the success of behavior based robotics can be attributed to the minimal
representation approach proposed by Brooks in the mid-eightiesBrooks (1991). How-
ever, this has lead to a general “fear of state” which in turn leads to a neglect of
the role of state in intelligent control. This paper discusses the need for propagating
decision points in action selection in order to coordinate complex behavior. It also
proposes a mechanism for doing this while maintaining reactive responsiveness to the
real world. This mechanism involves the use of fixed action patterns and specialized
behavior prioritization. The result is to focus control attention without prescribing a
fixed course of action.

Topic Areas: Internal world models, Action selection



1 Introduction

One of the key components of the successes of the “new AI” approach to autonomous agents
has been the abandonment of the practice of constructing and reasoning from explicit, in-
ternal models of the environment. In “Intelligence Without Representation” Brooks (1991)
Brooks documents a methodological approach, subsumption architecture, that led to the first
generation of robots able to autonomously and robustly negotiate their worlds at animal-like
speeds. The heart of this advance is the decomposition of intelligent control into units of
behavior. Each behavior consists of a finite state automata (augmented with a simple clock)
that produces actions as a fairly direct reaction to its perception of the environment. Each
behavior can interfere with other behaviors only through affecting their inputs and outputs
in strictly limited fashions. Brooks found in his experimentation that:

We have reached an unexpected conclusion (C) and have a rather radical hypoth-
esis (H)

C — When we examine a very simple level intelligence we find that
explicit representations and models of the world simply get in the
way. It turns out to be better to use the world as its own model.

H — Representation is the wrong unit of abstraction in building the
bulkiest parts of intelligent systems. [Brooks (1991) p.140]

This representational minimalist approach has proven useful not only for fairly complex
robots like Polly Horswill (1993) and Genghis Brooks (1989), but for telephone network
balancing Appleby and Steward (1994) and laser head control Pebody (1995).

Unfortunately, this work has been misconstrued as an extremist position that intelligent
control should require no state, and the misconception that a reactive architecture is a
stateless one. Subsumption architecture is composed of augmented finite state machines;
state is a necessary element of keeping place within a control structure. Also, it quickly
becomes apparent that a system with no representation can’t learn. After all, representation
could be defined as “the way memory is stored and accessed,” and memory as “what changes
when something learns.” The ability to learn is present in even the simplest animal life; it
is likely to be a necessary component of any intelligent behavior for any other autonomous
system.

This paper concentrates more on the former area, which has also been neglected in the
purge against state. In this paper I discuss what kinds of state are necessary for straight-
forward intelligent control, even without long-term skill or knowledge acquisition. My hy-
pothesis is that without better ways to manage decision and control state it is very difficult
to get complex behavior, particularly where this behavior requires the execution of sequential
tasks. I begin with an examination of the relationship between control and state in well docu-
mented robotics experiments using both “traditional” model-based control and subsumption
architecture. I then propose an organizational structure based on biological precedent, and
describe the results of preliminary experiments in simulation using this model.
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2 Robotic Memory Examined: Shakey vs. Genghis

Shakey is a robot constructed used as an experimental platform by the Artificial Intelligence
Center at SRI International between 1966 and 1972 Nilsson (1984). This was one of the
most extensive intelligent robotics projects ever, and many of Shakey’s achievements have
yet to be fully replicated. Genghis, in contrast, is an insect-like robot that’s control was
developed very quickly under subsumption architecture in 1989 Brooks (1989), but could
more successfully negotiate a dynamic, complex environment.

Parallels between Shakey’s architecture and that of reactive systems have been drawn
before in an effort to belittle the more recent accomplishments. The viewpoint of this paper
is rather that the fact experimentation forced Shakey to converge towards a more reactive
architecture validates the new approach. More importantly, as often happens in science, a
new paradigm now allows us to better understand and exploit the older results.

2.1 Shakey and its Model

SRI’s objective in creating Shakey was

...to develop concepts and techniques in artificial intelligence enabling an automa-
ton to function independently in realistic environments. These concepts shall be
demonstrated by means of a breadboard, mobile vehicle containing visual, tac-
tile, and acoustic sensors, signal processing and pattern-recognition equipment,
and computer programming. Primary goals shall be the solution of incompletely
specified problems (requiring creation of intermediate strategies and goals) and
improvement of performance with training experience. [Nilsson (1984) p.4]

Initially, Shakey’s model of the world consisted of two different representation forms: a
map-like grid model and an axiom model. Eventually the model was shifted to a single, axiom
based model that was used for “all its operations.”[p.19] The foundations of this model were
simple predicate assertions about five classes of entities: doors, wall faces, rooms, objects
and the robot. These predicates held simple information about their entity, such as its name
or coordinate location, or somewhat more complex interdependencies like which rooms or
faces a door connects, or what room an object is in.

Shakey’s creators did not consider the predicate assertions to be the limits of their model;
they considered the model to have more complex statements including conjunctions and
disjunctions. They found they ran into difficulty maintaining these higher levels of the model
when the robot performed an action. This is called “the frame problem” in AI literature. For
Shakey, SRI decided that action routines should only update the most primitive predicates.
All other statements were stored with the predicates on which they depended. When the
system fetched a non-primitive statement, its primitives were tested to see if they were
still in the model, if not the non-primitive was also removed. This fairly simple form of
truth-maintenance meant that Shakey derived most of its reasoned information in real time.
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2.2 How Shakey Used Its Model

Shakey used this model for three purposes:

1. to plan actions that would solve its goals (using STRIPS,)

2. to drive its actions, and

3. to coordinate its distributed control system.

The first purpose is the most obvious to people familiar with traditional artificial intel-
ligence. STRIPS is essentially a rule-based system; the assertions of the model provide an
initial database out of which plans are constructed. A plan is simply a list of operations that
would move from the starting (current) state to the goal state.

In Shakey, each operation in STRIPS had an equivalent “action” in PLANEX, the system
responsible for executing a generalized version of the plan. The generalization process is
claimed as a feature allowing a plan once built to be reused in a variety of circumstances.
However, experienced roboticists can recognize that such a system would also allow for the
robust execution of a plan in an uncertain environment. The subgoals of each step of the
plan, that is, the precondition/predicate each step is intended to enable, are carefully indexed
so that at any point the plan can be shifted as far towards its ultimate goal as the robot’s
model of its current state allows.

The PLANEX actions look like regular function calls with elements of the model as
arguments, but their primitives include the interface to Shakey’s sensors and actuators, each
of which could return success and failure values. Shakey’s control system was ultimately
highly hierarchical and distributed, so that returning error values through the system was
deemed as too awkward. By the time a function “smart” enough to be able to cope with a
particular failure received the flag, it could no longer tell at what level the error had occurred.
So Shakey reported its errors simply by recording the results of its actions, successful or
otherwise, in its internal model. Every “higher” function then had the responsibility of
checking the model at every step to ascertain whether the previous action was successful.
To this extent, Shakey used its model to simplify its control.

2.3 What Genghis Does Instead

Genghis Brooks (1989) (and the other subsumption-architecture robots built before and after
it) performed most of these same functions without any internal representation. The “most”
is telling, but the functions it did perform, it largely performed better and faster.

Genghis also used its model to communicate between its distributed and hierarchical
goal/action levels, but for Genghis that model wasn’t an internal representation, but was
the external world itself. Under subsumption architecture, behaviors are triggered directly
by senses, which are continuously active. In fact, all behaviors are operating continuously
and in parallel. Their outputs, which are the actions of the robot, vary appropriately with
the state of the world.
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A consequence of this form of action selection is what Agre and Chapman call “reactive
planning.” Agre and Chapman (1988) Agre and Chapman (and Brooks) deny the utility of
an extended sequence of actions based on formal reasoning from a static model of the world.
The world is continuously dynamic, they argue, and the only appropriate way to plan is to
select the action that right now seems most appropriate given the goal. This methodology
both ensures that an agent opportunistically takes advantage of favorable environmental
conditions that can unexpectedly advance its goal, and means there is no expensive or
brittle plan revision when actions fail to have their expected consequence, whether because
of failure or because of a change in the environment.

While most classic planners would usually miss these benefits of reactive planning,
Shakey’s PLANEX goal generalization and execution system can also be seen as reactive.
It is opportunistic and avoids replanning. Of course, it reasons from its model, which could
contain faulty information. If Genghis’ sensors provide noisy information, the error is masked
by the fact the that the system resamples its environment tens of times a second. A brief in-
appropriate motion can be quickly compensated for by the sense/action loops that compose
behavior based systems.

The one thing Shakey does with its model that Genghis cannot do is create new plans
(reactive or otherwise) in response to new goals. For Genghis, its highest-level goals are
instantiated in its top control layer, which has been carefully and complexly engineered.
Without the introduction of flexible internal state at this highest level, there can be only
one goal.1

2.4 Control and Short Term Memory

Let’s do a quick thought experiment on the nature of tasks that can be done with and
without state. For our experiment, let’s return to the most basic situated platform: a small
mobile robot trying to navigate around an office without getting stuck. Let’s say the robot
has three sensors mounted one straight ahead, one angling to the right of forward and one
angling to the left of forward. Each sensor returns a value for a distance to the nearest
obstacle within the response cone radiating in front of it, and each response cone is directly
adjacent to its neighbor so that there can be no hidden obstacle between the center sensor
and one of the two flanking ones. In this case, a robot could continuously choose to run in
the direction of whichever sensor reports the longest clear path.2 This robot needs no state
for this navigation. There can be constant loops that introduce rotation into the trajectory
of the robot if the clearest path is to one side or another.

Now imagine that this same robot has forward bump sensors. Instead of continuous
values, it only receives a signal when it has already come too close to an obstacle. In this
case, the robot needs to back up and turn away from the obstacle to avoid it. Notice that

1Flexible state in a top level goal was introduced for a subsumption-architecture robot named Toto
Matarić (1990). This robot could take multiple goals — it could be asked to navigate to any of the locations
it had learned.

2This is essentially the obstacle avoidance algorithm for Polly Horswill (1993), though the sensors are
three subdivisions of the visual scene returned by a single camera.
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during this avoidance, the robot is not getting any signal from its sensors. In order to
complete the entire maneuver, the robot must remember not only that it hit its bumper, but
where it is in the sequence of motions to compensate. In fact, retaining the initial trigger
of the action pattern is probably not important, but keeping track of the progress of the
behavior sequence until it terminates is.

Genghis actually does have touch sensors. They trigger behaviors with timers in them
that dominate the “default” behaviors until the timers have run out. (These timers are the
reason subsumption architecture behaviors are defined as augmented finite state machines.)
But the point of the thought experiment is that it answers the question “When do you need
control state?” Whenever a time-bounded event should influence behavior after the end of
that time boundary.

Even this rudimentary change of state is called “learning” by some researchers. But
by conventional use, we would only call such a change “learning” if it leads to permanent
changes in behavior; that is, if it changes the state of long term memory. If the event only
affects immediate behavior, then if its trigger is external we call that behavior a “reaction.”
If the trigger was internal, such as an arbitrary choice among possible goals to pursue, we
might call it a “decision.”3 Either way, this information is stored in short term control
memory.

2.5 “Short Term Memory” in Ghengis and Shakey

With our new understanding of “reactions” and immediate behavior, we can revisit our
thought experiment about the two kinds of sensors on a mobile robot. The robot’s con-
trol under the continuous distance sensors could also be understood in terms of short-term
memory and state. The difference is only that here the time to sample the environment and
execute the reaction is extremely brief, so recovery from error is so quick and fluid as to be
transparent. Thus in both cases, the short term memory necessary for reacting appropriately
to the environment is buried in the actual behaviors that process the sensor input. 4

Let us now return to Shakey — to what extent did it really need its model? The problem
with Shakey was that the cost of achieving new sensor input was very high; it took several
minutes to take and analyze a picture. Therefore it was much more reasonable for Shakey to
make as much progress as possible on remembered state. Clearly, if Shakey had been able to
recognize the salient features of its environment with the fast, efficient perceptual routines
that have been the hallmark of behavior based robotics, its navigational trajectories and
motion could have appeared more smooth, fast and intelligent. But if it had no model at
all, the project objective of being able to communicate goals or tasks to it, particularly tasks
involving objects in other rooms, would have been nearly impossible. Also, Shakey would
have lost its ability to create new, task-specific orderings of its behaviors into general/reactive

3Notice that an external observer might not be able to discern the difference between a “reaction” and a
“decision.”

4Cognitive neuroscience indicates that short term memory for animals is also contained in the perceptual
processing systems of the appropriate sensor modalities. Long term memory is a separate and parallel process
involving completely different regions of the brain.
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plans.

3 A Better Way to Maintain Decisions

The previous section establishes the need to maintain decision state in control in order to
execute complex behavior, or at least any behavior that requires actions because of an event
after the event. For a conventional planning system, like Shakey, there are two locations
for decision state. One is the plan itself, the other is the goal. Essentially, a plan is an
ordered set of behaviors that have been previously determined to be appropriate, given a
goal and a world state. Choosing a new goal (or subgoal) also preserves state about the
robot’s intentions. In Shakey, maintaining the goal separately from the plan allowed the
robot to compute a new plan if the current one failed. This in theory allows for robust,
coherent behavior. However, robots running planning systems still tend to have too rigid
and brittle a behavior, as well as spending too much time in computation. In the first part
of this section, we propose a new method of organizing control state which is ethologically
inspired and at least partially reactive.

Recall that Genghis also has control state for decisions as provided under subsumption
architecture. But this is a simple timer used to inhibit other behaviors while a particular
unit “takes control.” In other words, this is an exception handler, built into subsumption
architecture because of a particular exception (Herbert’s loosing visual contact with a can
it was trying to pick up, see Connell (1990)). But in animals, decisions are not occasional
events. The overall behavior of a creature at any given moment is a choice of context, a
focusing on a particular set of capabilities. For an example, consider rat navigation. There is
now strong neurophysiological evidence that rats do not constantly maintain a single spatial
representation global to their experience, but rather have many spatial matrices which are
drawn into “working memory” when appropriate, indexed by context McNaughton et al.
(1996). Therefore, at every instant a rat’s motions are to some extent guided by a fixed
decision point, in this case recognition of location and task. The second part of this section
reports experiments which indicate that such decisions may be used to focus limited attention
resources and thus enable behavior that is too complex for flat architectures.

3.1 The Model

The model I propose provides two structural mechanisms for maintaining decision state
outwith an individual behavior. The first is the Action Pattern (AP) which is based on
the concept of Fixed Action Patterns familiar from ethology. Action patterns are simple
sequences of actions which once started, can only be interrupted from internal failure. In
nature, FAPs serve to seriously reduce the combinatorial complexity of action selection. In
my model, APs can be composed of traditional subsumption architecture behaviors, action
primitives, or other APs. They can also, like ordinary behaviors, be linked to sensor inputs
which can essentially inhibit their availability.

The second structure is a Competence, which is a group of action patterns associated with
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a goal. When an internal decision point is reached to pursue a particular goal, the control
mechanism turns its attention to a prioritized set of action patterns associated with it. Of
all the APs that currently have their sensor preconditions met, the highest priority one is
triggered. Priority can also be understood in terms of activation level; when a goal’s level is
raised to its threshold, it excites appropriately the associated behaviors. Whenever an active
AP fires, it also “habituates” by lowering its priority level. This guarantees termination of
a competence, and also that in the case of multiple, equally weighted and equivalently
prepared strategies, different ones will be tried. If a competence needs to repeatedly execute
a particular action, it can be retriggered and pick up where it left off. This allows for a
level of reactiveness, such as is exhibited when an animal periodically breaks from feeding
to survey its environment.

The competence itself is also reactive, another instantiation of the concept of a reactive
plan. The competence doesn’t predict deterministically the next action pattern to be called,
or “expect” that an action pattern will “succeed”. Every AP is selected based on the current
environment. The action patterns themselves are less reactive, although they can terminate
prematurely either due to sensor checks or radical failure of a constituent action. This is in
keeping with the current ethological definition of a FAP.

The intent behind the design of this architecture is to provide a grammar for expressing
animal behavior, not only instinctive but learned. Thus the concern is to present both
a straight-forward way for researchers to develop a lexicon of provided knowledge for a
robot, and mechanisms for the learning of new behavior. In animals, acquisition of complex
behaviors seems to come from imitation of conspecifics, recombinations of old knowledge, and
in relatively rare occasions (mostly in humans) developing of new skills through long periods
of training. This architecture was developed particularly with programmed knowledge and
learning by recombination in mind; so far research has only been carried out in the former
area.

3.2 An Implementation

I will now describe some preliminary experimentation with this model, performed in sim-
ulation. As indicated above, these experiments were only to ascertain the plausibility of
such a control model, and its programmability. However, partly because of our5 interest
in developing a learning system, we chose to use the action primitives, sensing capabilities,
domain and tasks described in Steve Whitehead’s well-known, blocks-world based learning
thesis, “Reinforcement Learning for the Adaptive Control of Perception and Action” White-
head (1992). Another motive for this choice of domain was that we have a functional visual
routine processor of the type postulated in Whitehead’s work (see Horswill (1995)), and so
have hope of implementing the system on a real robot. Finally, Chris Malcolm, the head
of Behavior Based Assembly Robotics at the University of Edinburgh has asserted that “no
behavior-based robot can ever do assembly, because it’s too complicated.”Malcolm (1992)
His group advocates hybrid systems of traditional planners with behavior based systems
simplifying the actual manipulations in the real world.

5These trials were begun with the advice of Ian Horswill, now of Northwestern University.
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As in subsumption architecture, the competences of this model have to be carefully
engineered. To succeed the action patterns must be prioritized in such a way that they will
converge to the goal if possible. The priority levels are arbitrary except that, where desirable,
they discriminate APs that could be active (sensor preconditions are met) at the same time.
Figure 1 shows a competence that achieves the end result of Whitehead’s thesis: it grasps
a green block, even if that block is buried under an arbitrary number of other blocks6. As
in Whitehead’s thesis, no attempt is made to optimize the block that is first selected for
attention.

Weight AP Name AP Actions
100 pick-up-green ACTN-in-hand = t, ACTN-color = green

50 lose-block object-in-hand = t
move-ACTN-to-table
place-object-at-ACTN

50 unbury-green object-in-hand = nil, ATTN-color = green,
markers-vertically-aligned = t
move-ACTN-to-stack-top
grasp-object-at-ACTN

40 synch-on-green ATTN-color = green
move-ACTN-to-ATTN

20 find-green move-ATTN-to-green

Figure 1: pick-up-green: A simple competence and the action patterns that compose it.
The weights are part of the competence, not the AP.

As can be seen from this code, Whitehead’s thesis was concerned mostly with the per-
ceptual task. The perceptual operations and state variables7 derive from David Chapman’s
implementation of Shimon Ullman’s “Visual Routines Theory” of the visual system Chapman
(1990). Obviously, in a real robot, grasping and placing would also have to be competences.
Perceptual learning is also a real, ethological issue: current developmental research indicates
that failures of categorization often result from a very real failure to perceive difference, and
require the development of new skills McGonigle and Chalmers (1996).

Ullman’s VRP theory is based partially on psychophysiology studies that indicate we have
a limited number of units of visual attention we can fix to various objects in our surroundings.
Ullman postulates that we can compare features of these markers, for example their color
and relative location. Given these limited resources, I found it very difficult to implement the
task Whitehead stated as his original goal, putting a red block on a green block, except as
two separate competences. By focusing behavioral attention I was able to optimize perceptual

6Actually, since Whitehead’s controller has a 2-bit stack-height sensing variable, he presumably allows
only 3 covering blocks and does not allow restacking.

7What I call “markers”, Whitehead calls “frames.” Due to my AI dialect, I chose Chapman’s terminology.
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attention limits. Since the behavioral attention can be explained with a simple neuron-based
model of activation levels, but a marker requires association with complex operations, this
is a reasonable tradeoff.

Green-on-Green Copy-Demo
Weight AP Name Weight AP Name

100 green-on-green 100 copy-demo
80 place-first-green 80 check-next-goal
80 place-green-on-green 60 add-blue
40 check-home 60 add-green
40 get-another-green 60 add-red
40 get-first-green 60 place-block
30 clear-home 50 lose-block
30 lose-block 40 clean-home

20 start-over
Synch-Action-Up

Weight AP Name
100 synch-action-up
50 look-at-home-again
40 home-act-up

Figure 2: green-on-green and copy-demo: Both tasks also required the competence pick-up-
green shown above; copy-demo has pick-up-red and pick-up-blue as well.

For green-on-green8 (see figure 2) I did add an additional marker, “home”, for the location
of the produced stack. I presumed in a real animat this could be done by association with
privileged body orientation or other environmental cues. This marker has considerably less
operations than “action” or “attention”; it is more like the location “hand” in Whitehead’s
thesis than a true marker. I also implemented a trivial version of “the copy demo,” Winston
(1972) a block stacking task where the goal (another location) is another stack of blocks, also
viewed. With the goal thus externalized I was able to simplify the structural competence,
although I found it necessary to create a specialized perceptual competence for comparing
the piles. This task, the only one implemented with a fully debugged controller, took less
than two hours to program, debug and test in simulation.

4 Conclusions and Implications

This paper has reviewed the role of state in robotics, with particular attention to the need for
propagating decisions through the control structure in order to carry out complex, sequential
tasks. I have presented a model whereby such propagation can be achieved via the ethologi-
cally inspired mechanisms of fixed action patterns and graded increases of activation levels.

8One of the first learning procedures implemented will be the obvious generalization procedure for a
competence, where sensory difference in a goal is “variablized” and repeated throughout the competence.
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I have also described some preliminary experiments in implementing this model. Clearly the
model needs to be refined, but it serves as a demonstration of the main argument of the
paper. It should also be acknowledged that, as an architecture, it is not particularly unique.
It resembles the architectures presented in Correia and Steiger-Garção (1995), which is also
FAP inspired, and the competences resemble TR Nilsson (1994). Both these architectures
have been successfully implemented in mobile robots. But both projects have substantially
different conceptualizations of their underlying model from the one presented here.

Understanding the relationship between control and state may bring us closer to under-
standing the notion of control as state. Possibly an appropriate representation of motor con-
trol is an integral part of an appropriate representation of memory for motor tasks. The idea
of associating goal tasks with motor memories comes close to the model of mouse navigation
researched by McNaughton McNaughton et al. (1996). They have a body of experimental
evidence indicating that mouse spatial representation consists of matrices of ideothetic in-
formation combined with loose associations to goals and landmarks. These landmarks serve
both to index and to recalibrate the ideothetic information. Perhaps if we can understand
the minimal state needed to control an agent’s motions, then we will know the minimal state
needed to record them.
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