
1

Lecture 12

Reuse in Systems Engineering

Systems Engineering

Dr. Joanna Bryson
Dr. Leon Watts

University of Bath
Department of Computer Science

2

After attending this lecture and doing the reading, you should be
able to:

Explain why reuse is important in systems engineering.

Define the term “Reuse Landscape” with examples.

Discuss the benefits and limitations of reuse in a given project.

Give examples of four different types of reuse in SE.

Describe component based reuse and COTS software development,
and discuss their relative advantages and limitations.

Learning outcomes

3

Reusing knowledge in
systems engineering

Systems engineering projects generally involve engineers from
different disciplines.

Different disciplines work with a different knowledge. base

Want to re-use knowledge and practices.

Software re-design typically compensates for
misunderstandings earlier in process.

4

Systems Engineering V
Requirements

analysis

Functional analysis

Design overall system

Specify sub-
systems,
including
interfaces

Engineer Sub-
systems

Engineer Sub-
systems

Engineer Sub-
systems

Engineer Sub-
systems

Integrate & test

Manage acceptance

Through-life review

Software

Software

5

System Engineering ‘V’ Process
Sub-systems are generally developed in parallel.

Defining sub-system interfaces is a critical activity for parallel
sub-system development; changes are costly.

Limited scope for iteration between phases.

Software is often used to compensate for problems with
hardware design.

Identifying sub-systems makes use of knowledge of existing
components.

Need to match and assign requirements to sub-systems.

6

The Reuse Landscape

Design Patterns Component Frameworks

Product Line Architectures Aspect-oriented SE Program Generators

 Enterprise Resource Planning CBSE COTS integration

Legacy System Wrappers Service-oriented systems

Configurable vertical applications

Program Libraries

7

Reuse Benefits

SE companies report benefits from in-house reuse:

Fujitsu : 20% to 70% more projects completed on-time

NEC : 7-fold productivity increase

 HP : 40% reduction in time to market and approx. 35% fewer faults

Achieved by years of investment in reuse

Designing software to be reusable (more expensive).

Investment in specialised reuse repositories for component
retrieval and demand assessment.

8

SE companies are increasing their software reuse

Component dependability and process risk

Encapsulation of specialist knowledge

Compliance with standards (e.g. UI)

Accelerated development schedule

Shift to software-as-a-service (SOA)

Most common types of software reuse:

Component Reuse (CBSE)

Application Reuse (COTS Integration)

Objects / Functions (OO Reuse)

Concept reuse (e.g. Design Patterns)

The “Reuse
landscape”

Software Reuse

9

Example Component Models
A component model is a definition of
standards for component
implementation, documentation and
deployment.

Common Object Request Broker
Architecture (CORBA) component model

‘Middleware’ allowing integration of
many different machines and
technologies.

Enterprise Java Beans (EJB) component
architectural model

COM+ model (.NET model)
10

Component Based Reuse
Object and function reuse market is disappointing

Too fine grain

Component based reuse focus on medium-grain software units

What is a component?

“A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties” [Szyperski ‘02]

Component characteristics
Standardisation (component model)

Composable

Independent (provides / requires interface)

Documented (API)

Deployable

11

Developing Components for Reuse
Component reusability

Should reflect stable domain abstractions;

Should hide state representation;

Should be as independent as possible;

Should publish exceptions through the component interface.

Developing components for reuse can be expensive

Components must be specially developed for reuse.

The more general the interface, the greater the reusability but more
complexity = less reusability.

Legacy systems are often “wrapped” for reuse to save on the cost of
rewriting them.

12

Component based reuse (CBSE)
CBSE Process model:

for predominantly reuse oriented development.

Outline system
requirements

Identify candidate
components

Modify requirements acq.
to discovered components

Architectural
design

Identify candidate
components

Compose components
to create system

13

Component based reuse (CBSE)
CBSE Process model:

for predominantly reuse oriented development.

Outline system
requirements

Identify candidate
components

Modify requirements ac. to
discovered components

Architectural
design

Identify candidate
components

Compose components
to create system

Component
search

Component
selection

Component
validation

14

Issues with CBSE
Need to be able to trust the component supplier.

At best, an untrusted component may not operate as advertised; at worst, it
can breach your security.

Requirements
Different groups of components will satisfy different requirements
(conflicts)

Validation & Verification

The component specification may not be detailed enough to allow
comprehensive tests to be developed.

Components may have unwanted functionality. How can you test this will
not interfere with your application?

15

Component Reuse Failure Case
Ariane 5 launcher

Reuse of inertial reference software from Ariane 4

Black box reuse

Field-proven code

Rocket de-stabilised and was forced to self-destruct only 37
seconds into launch.

Software had shut down at runtime.

Overflow exception in numeric conversion routine.

Rocket engines too powerful.

Routine was not used in Ariane 5 mission.

No requirement so no test.
16

Application (COTS) reuse
Coarse grain reuse.

Greatly accelerated development times.

Potentially at the cost of maintainability.

Software product lines (in house).

Risks variations on your product due to subsequent market
changes.

Third party vendors.

E.g. databases linked to report generators.

17

Potential Pitfalls of COTS
Development
Lack of control over functionality and performance.

COTS systems may be less effective than they appear.

Problems with COTS system inter-operability.
Different COTS systems may make different assumptions that means
integration is difficult.

No control over system evolution.
COTS vendors not system users control evolution.

Support from COTS vendors.
COTS vendors may not offer support over the lifetime of the product.

18

White Box Reuse
Source code availability (and documentation) greatly improves
maintainability and aids verification.

Open source development

Licensing

Generator-based reuse (a form of concept reuse)
Application generators for business data processing.

Parser and lexical analyser generators for language processing.

Code generators in CASE tools.
Consider the cost of understanding / maintaining the code.

Very cost-effective but only possible in a relatively small number of
application domains.

19

Combining Component Standards

Controller

View Model
Server
Model

Client
Model

Viewer
View

Server

20

Disadvantages of Reuse
Verification implications for your system.

“Black box” re-use: Certification and liability of 3rd party code.

Emergent properties.

Restrictions on requirements and evolution.

Reuse repository.

Populating with components can be expensive.

CASE support may be poor.

Search (component discovery).

Distrust within the development team.

NEC: “In most firms, each department prefers to use only its
own piece of code to execute a function, and does not
trust code developed elsewhere.”

21

Summary

Reuse is important in systems engineering because concurrent
development and integration of sub-systems is essential.

The “Reuse Landscape” covers a wide range of elements and
methods for their combination.

Reuse can speed up development but externally sourced may
compromise requirements.

Now know examples of four types of reuse common in software
engineering and their relative advantages and limitations.

