Learning outcomes

Lecture 12

Reuse in Systems Engineering

2r. Joarnna Bryson
Dr. leon Watts

é[nfl/e/*&fiy of Bath
Department of Competter Science

—— After attending this lecture and doing the reading, you should be
able to:

Explain why reuse is important in systems engineering.
Define the term “Reuse Landscape” with examples.

Discuss the benefits and limitations of reuse in a given project.
Give examples of four different types of reuse in SE.

Describe component based reuse and COTS software development,
and discuss their relative advantages and limitations.

2

——{ Systems engineering projects generally involve engineers from
different disciplines.

— Different disciplines work with a different knowledge. base
— Want to re-use knowledge and practices.

— Software re-design typically compensates for
misunderstandings earlier in process.

3

‘ m(ludmg
interfaces

Epginger Sub ll"
—d
Engineer Sub-
systems

System Engineering 'V’ Process

The Reuse Landscape

—— Sub-systems are generally developed in parallel.

~— Defining sub-system interfaces is a critical activity for parallel
sub-system development; changes are costly.

1 Llimited scope for iteration between phases.

— Software is often used to compensate for problems with
hardware design.

— Identifying sub-systems makes use of knowledge of existing
components.

— Need to match and assign requirements to sub-systems.

5

Configurable vertical applications

Program Libraries

Reuse Benefits

Pre)
| l FUJITSU
——1{ SE companies report benefits from in-house reuse: l
— Fujitsu : 20% to 70% more projects completed on-fime NEC
D

— NEC :7-fold productivity increase

— HP :40% reduction in fime to market and approx. 35% fewer faults
—— Achieved by years of investment in reuse

— Designing software fo be reusable (more expensive).

— Investment in specialised reuse repositories for component
retrieval and demand assessment.

7

companies are increasing their software reuse
— Component dependability and process risk

— Encapsulation of specialist knowledge

— Compliance with standards (e.g. UI)

— Accelerated development schedule

— Shift to software-as-a-service (SOA)

—— Most common types of software reuse:

~— Component Reuse (CBSE)
— Application Reuse (COTS Integration) The “Reuse
— Obijedis / Functions (00 Reuse) landscape”

— Concept reuse (e.g. Design Patterns)

Example Component Models

Component Based Reuse

——1{ A component model is a definifion of (oot | [et [
standards for component
implementation, documentation and T T T T T T
deployment < Object Request Broker >
Hil Common Object Request Broker ‘ l l ‘ J
Architecture (CORBA) component model ORBA Senices
— 'Middleware’ allowing integration of 58 coner
many different machines and m— I EBconporer
technologies. _-
il Enterprise Java Beans (EJB) component o =
architectural model — _
—{ (OM+ model (.NET model) 9

Developing Components for Reuse
—1 Component reusability

— Should reflect stable domain abstractions;

— Should hide state representation;
— Should be as independent as possible;
— Should publish exceptions through the component interface.

1 Developing components for reuse can he expensive
— Components must be specially developed for reuse.

— The more general the interface, the greater the reusability but more
complexity = less reusability.

— legacy systems are often “wrapped” for reuse to save on the cost of

rewriting them. I

—1{ Object and function reuse market is disappointing
— Too fine grain
— Component hased reuse focus on medium-grain software units

—1 What is a component?

— “Asoftware component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties” [Szyperski ‘02]

—1 Component characteristics
— Standardisation (component model)
— Composable
— Independent (provides / requires interface)
— Documented (API)
— Deployable

Component based reuse (CBSE)

—— (BSE Process model:

— for predominantly reuse oriented development.

i
W
l] 1 l
l!Lrul || [dentify candidate | | (omposel
n components fo crea

Component based reuse (CBSE)

Issues with CBSE

—— (BSE Process model:

— for predominantly reuse oriented development.

Outline system || Identify condidate | | Modify requirements ac. fo

requirements components discovered components —I
| Architectural Identify candidate Compose components
] " —>
design components fo create system
=
Component Component Component
-------- — >)| e i3I Fomeem
search selection validation

—— Ariane 5 launcher

— Reuse of inertial reference software from Ariane 4
— Black box reuse

— Field-proven code

— Rocket de-stabilised and was forced to self-destruct only 37
seconds info launch.

— Software had shut down at runtime.
— Overflow exception in numeric conversion routine.
— Rocket engines too powerful.

— Routine was not used in Ariane 5 mission. ata

— No requirement so no fest.

1 Need to be able to trust the component supplier.

— At best, an untrusted component may not operate as advertised; at worst, it
can breach your security.

] Requirements

~— Different groups of components will safisfy different requirements
(conflicts)

~——1{ Validation & Verification

The component specification may not be detailed enough to allow
comprehensive tests fo be developed.

— Components may have unwanted functionality. How can you test this will

not interfere with your application?
14

Application (COTS) reuse

——1 Coarse grain reuse.
1| Greatly accelerated development fimes.

— Potentially at the cost of maintainability.
1 Software product lines (in house).

— Risks variations on your product due to subsequent market
changes.

——1 Third party vendors.

— E.g. databases linked to report generators.

16

White Box Reuse

—1 Lack of control over functionality and performance.
— (0TS systems may be less effective than they appear.

—— Problems with COTS system inter-operability.

— Different COTS systems may make different assumptions that means
integration is difficult.

~——1 No control over system evolution.
— (0TS vendors not system users conirol evolution.

~—| Support from COTS vendors.

7

— (0TS vendors may not offer support over the lifetime of the product.

——1 Source code availability (and documentation) greatly improves
maintainability and aids verification.

— Open source development
— Licensing
~—| Generator-based reuse (a form of concept reuse)
— Application generators for business data processing.
~— Parser and lexical analyser generators for language processing.

— (Code generators in CASE tools.
— Consider the cost of understanding / maintaining the code.

— Very cost-effective but only possible in a relatively small number of
application domains.

18

Combining Component Standards

Disadvantages of Reuse

‘ AT
jew \‘ MO(M' | I I

iew Client
erver { Model

Viewer

——1{ Verification implications for your system.
— "Black hox” re-use: Certification and liability of 3¢ party code.

~— Emergent properties.
—1 Restrictions on requirements and evolution.
—1 Reuse repository.
— Populating with components can be expensive.
— CASE support may be poor.
— Search (component discovery).

~——1{ Distrust within the development team.

— NEC:“In most firms, each department prefers to use only its
own piece of code to execute a function, and does not
trust code developed glsewhere.”

Summary

