
1

Systems Engineering
Lecture 3

Cost Estimation

Dr. Joanna Bryson
Dr. Leon Watts

University of Bath
Department of Computer Science

2

Learning outcomes

After attending this lecture you should be able to:

Contrast approaches for estimating software project cost, and identify the
main sources of cost in a software project.

Describe three mechanisms for estimating software productivity, and their
relative advantages/disadvantages.

Describe what is meant by the term “person month” and how this metric
should be used with care when planning.

Explain the term “algorithmic cost modelling” and describe the rationale
behind such approaches, giving examples.

3

Cost Estimation
Associating estimates of effort & time with each activity in the

project plan.

Total cost of software development is governed by three
dominant factors:

Cost of hardware and software

including any maintenance,

Staff travel and training

(can be mitigated using technology) and

Cost of development effort.
4

Cost Estimation
 Cost of development effort = salary of software engineers

But also overheads such as…
Facility / Estates

Cost of providing heat, light, office space, etc.

Network and communications
Network charge / bandwidth

Support staff
Secretaries, technical, accountants.

Support resources
Library access, software etc.

Pensions and taxes e.g. National Insurance

Typically

2x

Salary

!!

5

Cost Estimation

Cost estimation is ongoing throughout any software project.

Not exact, but must be realistic.

If expenditure exceeds budget, actions include:

Re-evaluating scope of project,

Applying to client for additional resources.

Price to client may not be only a function of development issues.

Business strategy may play a role e.g. loss-leading.

6

Cost Estimate Uncertainty

Maybe! Never really know
hidden costs, e.g.

opportunity costs, what exact %
time people work on project,

human capital impact.

7

How to estimate Cost?
Difficult to know what we are building early on.

In most cases project costs are estimated based on previous,
subjective experience:

Estimate by analogy.

Expert judgement.

Market based, e.g. self-fulfilling costs; contract-winning;
quality-signalling.

Algorithmic approaches (more on this later…)

“Objective”...

Best to employ several approaches and compare.
8

Software Productivity
Productivity is typically measured using:
"#$%&'()*)(+!,!$&(-&(!.!($(/0!%1*10$-213(!144$#(

Software is intangible, so output is difficult to quantify.

Two approaches are common:

Volume-related metrics

Material output by development team in some unit /
time e.g. lines of code / week.

Functionality-related metrics

Amount of desired functionality developed / time.

Such measures are not quality oriented!

9

1. Lines of Code (LOC/pm)
What's a line of code?

First proposed with punch cards;

In Java a statement can span several lines or there can be several
statements on one line.

Expressiveness of language can give misleading results
Analysis Design Coding Testing Documentation

Assembly code

High-level language

3 weeks

3 weeks

5 weeks

5 weeks

8 weeks

4 weeks

10 weeks

6 weeks

2 weeks

2 weeks

Size Effort Productivity

Assembly code

High-level language

500 0 lines

150 0 lines

2 8 weeks

2 0 weeks

714 lines/month

300 lines/month

Papers on Comparative
Productivity

These are linked from the moodle page.

11

2. Function Point Counts
Identify “function points” as I/O operations

external inputs and outputs;
user interactions;
external interfaces;
files used by the system.

Each point is weighted according to complexity (derived through experience)

!! 51)67(1%!8&22/()$3!.!%1*10$-213(!%&#/()$3!,!-#$%&'()*)(+

Advantage

Language independent (avoids LOC problem).
Can be transformed to LOC based on language specific average LOC for a func point.

Disadvantages

Subjective weightings. Biased to data processing applications.

3. Object Points
Object points (or application points)

 4GLs or similar -- Object points are NOT the same as object classes.

Number of object points in a program is a weighted estimate of:

The number of separate screens that are displayed;

The number of reports that are produced by the system;

The number of program modules that must be developed to
supplement the database code.

Higher level, so closer mapping to requirements.

Little dependency on implementation so easier to estimate early on in
the design process.

12

13

Factors affecting Software
Productivity

Size of project, or of team.

Communication overhead; Integration cost.

Prior experience of a domain.

Personnel make a big difference esp. in small teams.

Support teams/resources.

Working environment, including software & language.

Suitability and quality of software process model adopted.

14

Algorithmic Cost Modelling

Cost (effort) is estimated as a mathematical function of product,
project and process attributes.

Most algorithms are elaborations on an exponential relationship
between project size and effort, e.g.:

! ! ! Effort = A ! SizeB ! M

A is an organisation-dependent constant (historical adjustment)

M is a multiplier reflecting product, process and people attributes.

B is the empirical exponent: 1-1.5, relates to the complex, the size, and
the difficulties of the software. The larger the system, the larger the value.

15

Algorithmic Cost Modelling

! ! ! Effort = A ! SizeB ! M

– A is an organisation-dependent constant (historical adjustment)

– M is a multiplier reflecting product, process and people attributes.

– B is the empirical exponent: 1-1.5, relates to the complex, the size, and the difficulties of the software.
The larger the system, the larger the value.

How do we measure “Size”? Code size, FP, or OP.

How do we estimate constants of proportionality?

Compute best, worse and average cases.

Subjective (still!) Based on experience.

16

COCOMO 81 Examples

KDSI :is the number of thousand (K) Delivered Source
Instructions.

Boehm (1981) Software Engineering Economics

17

COCOMO
COnstructive COst MOdel

Widely used algorithmic model. Public domain.

Originally developed by Boehm in early 80s
COCOMO 81

Waterfall based, no OO.

Assumes all software developed from scratch.

COCOMO II (c. 2000) supports spiral (iterative) model.

Empirically derived model
63 software projects at TRW for COCOMO 81, 2-100K LoC.

COCOMO II supports 4GLs, re-use and iterative based software
processes.

18

Incorporates a range of sub-models that produce increasingly
detailed software estimates.

The four sub-models in COCOMO II are:

Application composition model. Used when software is developed
using a prototyping approach, linking together existing components.

Early design model. Used when requirements are available and
design has just started.

Reuse model. Used to compute the effort of integrating reusable
components.

Post-architecture model. Used once the system architecture has been
designed and more information about the system is available.

COCOMO II

19

Cost Estimate Uncertainty

20

1. Early Design Model
A cheap (to compute) estimation method when

little design detail is available, but requirements are agreed.

Based on a standard formula for algorithmic models
– PM = A ! SizeB ! M

– M = Product of 7 variables:

Product Reliability and Complexity (RCPX)

Reuse required (RUSE)

Platform difficulty (PDIF)

Personnel capability (PERS)

Personnel experience (PREX)

Schedule (SCED)

Support facilities (FCIL)

A = 2.94 in initial calibration

Size estimated using function points

Score 1-6

21

2. Application-composition model
Supports prototyping projects and projects where there is
extensive reuse.

Based on standard estimates of developer productivity in
application (object) points/month.

Takes re-use and CASE tools into account.

Formula is:
!! "9!,!:;"!<=!>!?#1&81.=@@!A!.!"BCD

PM is the effort in person-months

NAP is the number of application (object) points

PROD is the productivity (NB: ref to the next slide)
22

3. Re-Use Model

Takes into account black-box code and white-box code

There are two versions:

Black-box reuse where code is not modified. The effort
estimate (PM) is zero.

White-box reuse where code is modified. A size estimate
equivalent to the number of lines of new source code is
computed.

Productivity metric used to convert size to PM as in
application-composition

23

4. Post-architecture model
Most detailed COCOMO II Model

Used when subsystems identified (post A.D.)

Uses the same formula as the early design model but with 17 rather than 7
associated multipliers.

 PM = A ! SizeB ! M

Size is estimated as:

Number of lines of new code to be developed;

Estimate of equivalent lines of new code computed using the reuse model (ESLOC)

An estimate of the number of lines of code that have to be modified according to
requirements changes.

B computed as discussed earlier (Early Design Model)
24

17 Post-architecture
cost drivers: M
• Product

• Computer

• Personnel

• Project

[Sommerville, pp. 633]

25

The four COCOMO II sub-models
Number of

application points

Number of function
points

Based on Used for

Used for

Used for

Used for

Based on

Based on

Based on

Number of lines of
code reused or

generated

Number of lines of
source code

Application
composition model

Early design model

Reuse model

P ost-architecture
model

Prototype systems
developed using

scripting, DB
prog ramming etc.

Initial e!ort
estimation based on
system requirements
and design options

E!or t to integ rate
reusable components

or automatically
generated code

Development e!or t
based on system

design specification

Summary: with some reading
you should be able to...

Describe the activities in a typical project planning cycle.

Identify dependencies between project tasks, and analyse these to
determine critical paths in a project.

Schedule tasks in a software project using conventional charts and
notations.

Contrast approaches to estimate software project cost, and identify
the main sources of cost in a software project.

Describe three mechanisms for estimating software productivity,
and their relative advantages/disadvantages.

Describe what is meant by the term “person month” and how this
metric should be used with care when planning.

Explain the term “algorithmic cost modelling” and describe the
rationale behind such approaches, giving examples (COCOMO).

27

Further Reading

“The Mythical Man Month”

Fred Brooks Jr. ISBN: 020-183-595-9

“Software Engineering Economics”

Barry Boehm. ISBN: 013-822-122-7

Next week: Quality management

Sommerville, Ch.27.

