
1

Lecture 7

System Verification

Systems Engineering

Dr. Joanna Bryson
Dr. Leon Watts

University of Bath
Department of Computer Science

2

Learning outcomes

After both lectures and doing the reading, you should be able to:

Describe in detail the purpose, scope of, and activities
comprising each of the three main phases of software testing.

Discuss the THERAC-25 case study as a motivator for correct
V&V practice.

Explain what is meant by a test coverage metric.

Describe the role of automated test tools in the three main
phases of software testing.

Explain the role of debugging in the software process.

3

Software System Verification
“Doing the job right”

Static (Software Inspections)

Dynamic (Software Testing)

Testing:

The process of exercising or evaluating a system by manual
or automated means to verify that it satisfies specified
requirements or to identify differences between expected
and actual results [IEEE 1983]

Testing takes time and effort (~60% of development time?)
4

Specification & Verification

Testing is only meaningful with a specification.
Better specification = better testing

Clear expectations

Prioritisation

Success metrics

Scenarios / Use cases

5

THERAC-25: Case Study
THEraputic RAdiation Computer (1976)

Poor software testing practice causes harm & loss of life.

“Malfunction 54” – implied no dose when dose given.

Triggered by a certain (improbable?) key sequence.

One man ‘team’ (implementation and testing).

V&V considerations? 6

Testing
Testing against a specification

Check for valid behaviour against requirements (positive).

Check for defects / non-specified behaviour (negative).

How do you think of every possible unspecified behaviour?

Effective testing requires both positive and negative tests.

Testing strategies concerning code visibility:

Black box (Functional) Use the interface only.

White box (Structural) Use “insider knowledge” to check every
possible path through the code.

7

Testing
Have I tested enough?

No.

There will always be bugs, your organisation must deal with this.

However, at some point you have to release.

That point should be well-defined, for ethical & legal reasons.

Testing against specification / Fitness for purpose.

Test coverage metrics (whitebox.)

Testing by experts vs. testing by novices:

quantity of testers matters more than quality!
8

THERAC-25: Case Study

What makes this a good & a bad case study?

“Testing can only show the presence of errors, not their
absence.” [Dijkstra, 1972]

9

Having a serious 'test to break' attitude,

a strong desire for quality and attention to detail.

Balance stakeholder interests:

External stakeholder: the viewpoint of users, clients.

Internal stakeholders: tact and diplomacy to maintain a cooperative
relationship with development team.

Communication skills.

Testers serve at the interface between technical (developers) and non-
technical (customers, management) people.

Ability to judge high-risk areas of an application.

Necessary to focus testing efforts.

Qualities for Software Test Engineers

Expe!ence
10

Each of the three main phases of testing vary in system and
organisational scope.

The Three Phases of software testing

1. Component
 (Unit) Tests

2. Integration
Tests

3. System
Acceptance Tests

Code maturity

! test " test

Developer Independent team

11

The verification activity typically runs throughout the software lifecycle.

V-Model: Planning for Verification

Requirements
specification

Architectural
design

Low-level
design

Acceptance/
release test

Integration
test

Unit test

Implementation
& Verification

Plan

Plan

Plan

1. Component (Unit) Testing
The lowest level of formal testing.

A unit is the smallest component provided with a specification.

Focus on functional requirements (and coverage metrics).

Usually a white box process.

Each unit is tested in isolation.

Stub out external calls (within reason). Write drivers.

Can be a lot of work. CASE can help.

Advantages:

Easier to test a unit thoroughly when in isolation.

Can test many units in parallel.

13

OO, networking & concurrency can introduce additional
complexity.

State space

Temporal dependency

1. Component (Unit) Testing

14

Devising test cases can never be automated.

But running (many of) them can be…

Test harnesses can provide automated:

Environment generators / cleanup,

Test selection and execution,

Test results analysis,

Report generation and archiving.

Test harnesses are often built into configuration management
software.

Automated Testing

15

Test harnesses usually take the form of scripts written by the
development or test team.

Two main parts:

Test execution engine

Test script repository

Test Harnesses

16

Java CASE tool that encourages test-first development.

Often used in agile methods e.g. XP

Creates test harness for units

Assists unit and regression testing

Define tests by extending TestCase

JUnit public class MyTest extends TestCase {

 public void checkSquare() {

 Squarer s=new Squarer(3);

 Assert.assertTrue(s.result==9);

 // assertEquals(x,y) also used

 }

 …

}

17

Specify a test harness as a ‘suite’

JUnit
public class MyTest extends TestCase {

 public void checkSquare() {

 Squarer s=new Squarer(3);

 Assert.assertTrue(s.result==9);

 // assertEquals(x,y) also used

 }

 public static Test suite() {

 TestSuite suite=new TestSuite();

 suite.addTest(new MyTest(“checkSquare()”;

 ...

 return suite;

 }

}

18

Specify a test harness as a
‘suite’

Suite runs in JUnit GUI.

Good practice

Re-run your tests at least once
a day during development
e.g. lunch.

Keep updating your
TestCase(s) as you develop.

JUnit

Image: sourceforge.net

19

What proportion or percentage of the software have we tested?

Provides a measure of confidence in the rigor of our testing
process.

Common coverage metrics are:

Statement coverage: % of executable statements run at least
once.

Decision coverage: % of decision outcomes (branches) run at
least once.

Condition coverage: % of conditions causing decisions
independently tested.

Test Coverage Metrics

Whitebox

20

Debugging Process

A typical debugging process when testing:

Test

results

Locate

error

Design for

error repair

Re-test

program

Implement

repair

Specification
Test

cases

21

Debugging Process
Debugging, like programming, is an art learnt primarily through
experience.

Learn common errors (more about this later) and spot patterns.

Interactive Development Environments (IDEs) help debugging.

Access to symbol table in compiler.

Allow developer to step through code

Set breakpoints.

Add variable watches.

When debugging design documentation: some tools are also available
e.g. Rational Rose.

Can you do this in Eclipse?

22

Common Program Defects

There are two classes of common defect:

General issues, regardless of particular language,

Program language specific.

Over to you…

Can you think of any general errors you see (or make!) in
programs time and time again?

23

General program defects (1)
Data faults

Variables initialised before they are used?

All constants named?

Bounds

String delimiters

Compound statements (scope)

Control faults
All cases accounted for in case constructs? Breaks if needed?

Predicate logic on conditional statements.

Compound statements (control).

Exception management
All possible (reasonable) error conditions handled?

24

Interface faults

Number/type/order of arguments match?

Shared data structures.

Memory

Has enough (any?!) memory been allocated? (buffer overflow)

Memory leaks (slows execution even if garbage collection).

Stack overflow (end cases for recursion).

Pointer arithmetic.

General program defects (2)

25

Error Seeding / Bebugging
Intentionally introduce “typical” defects into the code.

Example:

TD = total detected = (SD+UD) = 40

S = 100 (known)

SD = 5 (how many seeded errors were found)

U = estimated total unseeded = 100 (40 - 5) / 5 = 700

Seeded detected (SD)

Seeded (S)
=

Unseeded detected (UD)

Unseeded (U)

26

Defensive Programming
Tests can be built into the code for execution at run-time.

E.g. range checks.

Heavily used in safety critical systems to prevent unsafe values

e.g. high doses of radiation.

These usually take the form of “assertions”
assert(x<3)

“I assert x should be <3 at this point. If not (if a false assertion), then
throw a fatal error”.

Indicates system aborting is more desirable than the consequence of a
value of x !3.

27

2. Integration Testing
Systems are built from components. These components must be
integrated at some stage to form the system.

The correct interaction of components must be verified.

Typically a white box process.

Iterate back to developers for debugging.

Prioritise the integration of components.

Implications for Testing:

i. Top-down vs. ii. Bottom-up integration

iii. Regression testing
28

i. Bottom-up integration & testing
Benefits:

No stubs needed.

Provides early integration of units.

Overall structural design can evolve until a late stage.

Problems:

Need an initial fully decomposed design to start (testing and design
cannot overlap initially).

29

ii. Top-down integration & testing
Achieved by stubbing out lower functions.

Gives a good progress indication of overall functionality.

Many stubs need to be written.

Stubbing may be seen as expensive for large projects.

Benefits may outweigh the costs.

Stubs can be seen as specifications.

30

iii. Regression testing
When new components are integrated...

We must test their integration with connected units, but

must also ensure the existing inter-operation of units is not damaged.

...therefore we employ regression testing.

Automation is necessary on medium to large scale projects.

3. Release / Acceptance Testing
Testing the system as a functioning entity that might be delivered to
the customer.

Black box testing.

Based on both Functional & Non-Functional Requirements.

Typically test cases will include:

Scenarios / Use-case-based tests

Equivalence partitioning.

Boundary value testing.

Walking the state transition table.

Stress testing and other external measures. 32

Each of the three main phases of testing vary in system and
organisational scope.

The Three Phases of software testing

1. Component
 (Unit) Tests

2. Integration
Tests

3. System
Acceptance Tests

Code maturity

! test " test

Developer Independent team

33

After both lectures and doing the reading, you should be able to:

Describe in detail the purpose, scope of, and activities
comprising each of the three main phases of software testing.

Discuss the THERAC-25 case study as a motivator for correct
V&V practice.

Explain what is meant by a test coverage metric.

Describe the role of automated test tools in the three main
phases of software testing.

Explain the role of debugging in the software process.

Summary

34

Test against subsystem functional specification.

Typical defect tests would include code centred:

Equivalence partition / boundary checks

Tests of branches

Tests of conditions

Concurrency/timing and contended resource issues

Whitebox Testing Tips

