
1

Lecture 9

System Verification II

Systems Engineering

Dr. Joanna Bryson
Dr. Leon Watts

University of Bath
Department of Computer Science

2

Learning outcomes

After both lectures and doing the reading, you should be able to:

Explain the role & practice of debugging in the software
process.

Describe in detail the purpose, scope of, and activities
comprising each of the three main phases of software testing.

Conduct a software inspection / code review.

Describe the components of a software test case and explain
its connection with system requirements.

3

Debugging Process

A typical debugging process when testing:

Test

results

Locate

error

Design for

error repair

Re-test

program

Implement

repair

Specification
Test

cases

4

Debugging Process

Debugging, like programming, is an art learnt primarily through
experience.

Learn common errors and spot patterns.

Interactive Development Environments (IDEs) help debugging.

Access to symbol table in compiler.

Allow developer to step through code

Set breakpoints.

Add variable watches.

You should be able to
do this in Eclipse.

Review

5

Common Program Defects

There are two classes of common defect:

General issues, regardless of particular language,

Program language specific.

Over to you…

Can you think of any general errors you see (or make!) in
programs time and time again?

6

General program defects (1)
Data faults

Variables initialised before they are used?

All constants named?

Bounds

String delimiters

Compound statements (scope)

Control faults
All cases accounted for in case constructs? Breaks if needed?

Predicate logic on conditional statements.

Compound statements (control).

Exception management
All possible (reasonable) error conditions handled?

7

Interface faults

Number/type/order of arguments match?

Shared data structures.

Memory

Has enough (any?!) memory been allocated? (buffer overflow)

Memory leaks (slows execution even if garbage collection).

Stack overflow (end cases for recursion).

Pointer arithmetic.

General program defects (2)

8

Error Seeding / Bebugging
Intentionally introduce “typical” defects into the code.

Example:

TD = total detected = (SD+UD) = 40

S = 100 (known)

SD = 5 (how many seeded errors were found)

U = estimated total unseeded = 100 (40 - 5) / 5 = 700

Seeded detected (SD)

Seeded (S)
=

Unseeded detected (UD)

Unseeded (U)

Review?

9

Defensive Programming
Tests can be built into the code for execution at run-time.

E.g. range checks, “impossible” default options for switch statements.

Heavily used in safety critical systems to prevent unsafe values, e.g. high
doses of radiation.

Remember: not just checking for yourself, checking future modifications.

These usually take the form of “assertions”

assert(x<3) “I assert x should be <3 at this point. If not (if a false
assertion), then I throw a fatal error.”

Indicates system aborting is more desirable than the consequence of a
value of x !3.

10

Each of the three main phases of testing vary in system and
organisational scope.

The Three Phases of software testing

1. Component
 (Unit) Tests

2. Integration
Tests

3. System
Acceptance Tests

Code maturity

! test " test

Developer Independent team

11

Java CASE tool that encourages test-first development.

Often used in agile methods e.g. XP

Creates test harness for units

Assists unit and regression testing

Define tests by extending TestCase

1. JUnit public class MyTest extends TestCase {

 public void checkSquare() {

 Squarer s=new Squarer(3);

 Assert.assertTrue(s.result==9);

 // assertEquals(x,y) also used

 }

 …

}

Review:
Component

12

Specify a test harness as a ‘suite’

public class MyTest extends TestCase {

 public void checkSquare() {

 Squarer s=new Squarer(3);

 Assert.assertTrue(s.result==9);

 // assertEquals(x,y) also used

 }

 public static Test suite() {

 TestSuite suite=new TestSuite();

 suite.addTest(new MyTest(“checkSquare()”;

 ...

 return suite;

 }

}

Review:
Component

1. JUnit

13

Specify a test harness as a
‘suite’

Suite runs in JUnit GUI.

Good practice

Re-run your tests at least once
a day during development
e.g. lunch.

Keep updating your
TestCase(s) as you develop.

Image: sourceforge.net

Review:
Component

1. JUnit

14

Test against subsystem functional specification.

Typical defect tests would include code centred:

Equivalence partition / boundary checks

Tests of branches

Tests of conditions

Concurrency/timing and contended resource issues

Whitebox Testing Tips

15

2. Bottom-up integration & testing
Benefits:

No stubs needed.

Provides early integration of units.

Overall structural design can evolve until a late stage.

Problems:

Need an initial fully decomposed design to start (testing and design
cannot overlap initially).

Review:
Integration

16

2. Top-down integration & testing
Achieved by stubbing out lower functions.

Gives a good progress indication of overall functionality.

Many stubs need to be written.

Stubbing may be seen as expensive for large projects.

Benefits may outweigh the costs.

Stubs can be seen as specifications.

17

iii. Regression testing
When new components are integrated...

We must test their integration with connected units, but

must also ensure the existing inter-operation of units is not damaged.

...therefore we employ regression testing.

Automation is necessary on medium to large scale projects.

3. Release / Acceptance Testing
Testing the system as a functioning entity that might be delivered to
the customer.

Black box testing.

Based on both Functional & Non-Functional Requirements.

Typically test cases will include:

Scenarios / Use-case-based tests

Equivalence partitioning.

Boundary value testing.

Walking the state transition table.

Stress testing and other external measures.

Review:
Acceptance

19

Each of the three main phases of testing vary in system and
organisational scope.

The Three Phases of software testing

1. Component
 (Unit) Tests

2. Integration
Tests

3. System
Acceptance Tests

Code maturity

! test " test

Developer Independent team

20

Software Inspections

Systematic review of software documentation

Usually program code, but possible with any readable system
documentation.

Performed in the setting of a group meeting.

There are 3 significant advantages to inspections:

Program need not be complete in order to inspect.

One error can mask others at run-time. Because inspection is static, this
is not an issue and more errors may be picked up.

Can consider broader issues e.g. coding standards, portability,
maintainability.

21

How to run a Software Inspection
• Create checklist before meeting.

• System overview presented to inspection team
at a meeting.
(500 statements/hour)

• Code / documentation distributed to
inspection team in advance.
(150 statements/hour)

• Inspection takes place in group meeting.
Errors are noted.
(100-150 statements/hour)

• Code / documentation modified (debugged).

• Re-inspect? (decision based on V&V budget)
22

Roles in a Software Inspection

• Reader

– Presents code to the
meeting, sometimes
stepping through lines.

• Inspector

– Spots the errors, or non-
compliances with broader
issues such as standards.

• Author / Owner

– Responsible for
producing the code or
document being
reviewed.

• Scribe

– Records results of inspection
meeting.

• Chairman / Moderator

– Responsible for running
inspection.

• Chief moderator

– Reflects on / improves
inspection process itself

QA

23

Features of Software Inspections
Formal methods may be used for rigorous software inspections
e.g. Cleanroom.

Informal methods tend to focus on:
Defect detection,

Poor programming style,

Standards conformance.

Informal inspections can detect up to 60% of defects [Fagan ‘86].
When applying formal methods, this can rise to 90% [Mills et al. ‘97].

Particularly valuable for loose-typed languages such as C.
Less useful for languages like Java as compiler does more of the work.

They are expensive, and become cost effective only when inspection teams
are experienced.

24

Test Planning

Effective Testing in the V-Model

Scenario

Use case

Test case

Joined-up Thinking about Validation and Verification: Test Cases

Requirements
specification

Architectural
design

Low-level
design

Acceptance/
release test

Integration
test

Unit test

Implementation
& Verification

Plan

Plan

Plan

25

How to Design Test Cases
What is a test case?

“A set of inputs and predicted outputs that are effective in discovering
program defects and showing the system meets its requirements”.

Three approaches to designing test cases
Requirement based

Partition based

“equivalence partition”

Structure / path based

Exhaustive testing of a system is impossible in all but the simplest
cases. Recall: fitness for purpose.

Increasingly

low-level

26

Writing Effective Test Cases

A test case should contain:

1. a clear statement of its objective, joined up with other development
documents, especially requirements.

2. test case name (meaningful title).

3. test case identifier (unique code number).

4. description of the test conditions/setup.

5. input data requirements.

6. the steps to be performed with the test setup.

7. the results of the test that are expected, if all is working properly.

27

Summary

After both lectures and doing the reading, you should be able to:

Explain the role & practice of debugging in the software
process.

Describe in detail the purpose, scope of, and activities
comprising each of the three main phases of software testing.

Conduct a software inspection / code review.

Describe the components of a software test case and explain
its connection with system requirements.

