How Databases Save
Your Data

Blue slides originally ©Silberschatz, Korth and Sudarshan

Modifications & additions by S Bird, J Bryson

Part -I: What’s a
Database

Blue slides originally ©Silberschatz, Korth and Sudarshan

Modifications & additions by S Bird, J Bryson

A first approximation...

® Databases are magic libraries that not only

give you functionality but let you store
information.

® Databases are servers, you can write clients
that access them in many languages.

® Most databases are relational, and their

functions are in SQL, more on that next
lecture.

Part |: What can go
wrong!

General Risks (and solutions)

Crackers: sabotage, theft;

backups, honest staff, secure software, up-to-date
software, logging to detect suspicious activity,
testing, ...

Failures: lack of business, hardware, network,
shipping, software;

reliability, redundancy, ...
Policy changes: laws and taxes catching up
with web commerce;

monitor legislation, join relevant associations.

Growth: coping with demand;
handling concurrent requests, scalable design.

Security Threats (1 of 2)

Exposure of confidential data
medical records, passwords, contact details, credit cards, ...

Solutions:
Don’t keep this data on the webserver.

Limit the privileges of the database account used by web-
accessible scripts.

Require end-users to authenticate themselves, store encrypted
passwords.

Use SSL (Secure Socket Layer, https).

Security of database files in the physical filesystem, firewalls,
physical security of the server.

Data loss

Web database might contain information that took many
months to collect.

Loss can be malicious (cracker), inadvertent (admin error) or
due to hardware failure.

Solutions: security, RAID drives, backups.

Security Threats (2 of 2)

Data modification
Changes to an account balance, additional DB privileges.
Hard to detect.
Solutions: security, backups, monitoring.

Denial of service
Actions designed to make a service inaccessible or very slow.

Repudiation
One party to the transaction denies having taken part.

Solutions: password-based authentication, digital certificates,
digital signatures, certification authorities.

Software errors

Poor specifications, false assumptions by developers, poor
testing.

Solutions: lots of testing, lots of user involvement, contingency
plans.

Part 2: The physical
safety of data

Types of Data Storage

Volatile storage:
Does not survive system crashes.
Examples: main memory, cache memory.
Nonvolatile storage:
Survives system crashes.

Examples: disk, tape, flash memory,
non-volatile (battery backed up) RAM.

Stable storage:

A mythical form of storage that survives all
failures.

Approximated by maintaining multiple copies
on different nonvolatile media stored in
different locations.

Data Storage Hierarchy

Primary storage: Fastest media but volatile
(e.g. cache, main memory).

Secondary storage: next level in hierarchy,
non-volatile, moderately fast access time (e.q.
flash, magnetic disks).

also called on-line storage

Tertiary storage: lowest level in hierarchy,
non-volatile, slow access time (e.g. magnetic
tape, optical storage).

also called off-line storage

Types of Storage for Digital Data

cache
I 1
main memory
| l
flash memory
AN

magnetic disk
[
optical disk
.

magnetic tapes

Magnetic Disks

Data is stored on spinning disk, and read/
written magnetically.

Primary medium for the long-term storage of
data; typically stores entire database.

Much slower access than main memory, but
much cheaper, and non-voliatile.

Data must be moved from disk to main
memory for quick access by programs, then
written back for storage.

Survives most power failures and system
crashes — non-volatile. Disk failure can destroy

data, but relatively rare.

Magnetic Hard Disk Mechanism

<«— spindle

cylinder c—HI ead-write
head

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Part 3: Keeping Data
Safe While You Change

It

Stable-Storage Implementation

Chunks of memory are called blocks.

When you change something in a
block, you need to make copies.

'*Three possible outcomes of copying a
- block:
Successful completion,

Partial failure - destination block has
incorrect information, or

Total failure - destination block was
never updated.

Keeping data safe requires detecting
& correcting failures.

Fidelity Through Transactions

A transaction is a unit of program execution

that accesses and possibly updates various data
items.

A transaction starts with a consistent database.

During transaction execution the database may
be inconsistent.

A transaction isn‘t committed (done) until you
know the database is consistent.

Two main issues to deal with:

Failures, e.g. hardware failures and system
crashes.

Concurrency, for simultaneous execution of
multiple transactions.

Remember this from the threading lectures.

Moving Data Around: Definitions

Physical blocks: blocks residing on the disk.

Buffer blocks: blocks residing temporarily in
main memory.

Block movements between disk and main
memory are initiated through the following two
operations:

input(B) transfers the physical block B to main
memory.

output(B) transfers the buffer block B to the disk, and
replaces the appropriate physical block there.

Moving Data Around

Each transaction T; has its private work-area in

which local copies of all data items accessed
and updated by it are kept.

Ti's local copy of a data item X is called x;.
Here we assume (for simplicity) that each data
item is stored in a single block.

It doesn’t have to be, there are simple
algorithms for fixing this.

Transactions are just like the areas we
protected in Java using synch() or locking, see
the ATM example in lecture

Sample Data Access Diagram

buffer

Buffer Block A ———F-[5 []input(A))
Buffer Block B —l Y | 1A
/ _ B

read(X) ~_ -

write(Y)

disk

L %

X4
Y1

work area work area
of T, of T,

Volatile Non-volatile

Moving Data Around (Cont.)

A transaction transfers data items between
system buffer blocks and its private work-area.
Transactions

Perform read(X) while accessing X for the first time;
All subsequent accesses are to the local copy.
After last access, transaction executes write(X).

output(B,) need not immediately follow
write(X). System can perform the output
operation when it deems fit.

Reminder: Volatile memory is faster, but more
vulnerable!

But until By is updated on disk, it's not safe, so
the transaction isn’t finished (committed).

Recovery from Failures

To ensure data is really saved on non-
volatile memory before commitment,

first output a description of the
modifications to stable storage without
modifying the database itself.

Then update the database.

Two ways to do this:
shadow-paging (naive), and
log-based recovery.

Shadow Database

Assume only one transaction is active at a time.

db_pointer always points to the current consistent
copy of the database.

Updates made on a copy of the database. Pointer
moved to updated copy after transaction reaches
partial commit & pages written.

On transaction failure, old consistent copy pointed
to by db_pointer is used, and the shadow copy is
deleted.

db_pointer db_pointer

BUseful for text editors, but
FJ H extremely inefficient for large
database -- executing a

single transaction requires
copying the entire database!

BAssumes disks don't fail.

old copy of
database
(to be deleted)

old copy of
database

new copy of
database

(a) Before update (b) After update

Log-Based Recovery

A log is kept on stable storage.

A log is a sequence of log records, which
record the update activities on the database.

When transaction T; starts, it registers itself by writing a
<T; start> log record.

Before T; executes write(X), a log record <7, X, V,;, V,>
is written, where V; is the value of X before the write, and
V, is the value to be written to X.

When T; finishes its last statement, the log record

<T; commit> is written. T7his is when the transaction T;Is
committed!

Periodically output entire database, then you can truncate
the log or just write this fact to the log.

Log records must be written directly to stable
storage (they can’t be buffered).

Deferred DB Modification (1/4)

Deferred database modification scheme
records all modifications to the log, but defers
all writes to after a partial commitment.
Transaction starts by writing <7, start> record
to log.
A write(X) operation results in a log record
<T, X, V> being written, where V is the new
value for X.

Note: old value is not needed for this scheme.

The real write is not performed on X at this
time, but is deferred.

When T; partially commits, <7, commit> is
written to the log.

Finally, the log records are used to actually
execute the previously deferred writes.

Deferred DB Modification (2/4)

During recovery, a transaction needs to be
redone if and only if both <7, start>

and<T,commit> are there in the log.

Redoing a transaction 7; (redo T;) sets the
value of all data items updated by the
transaction to the new values.

Crashes can occur while:

the transaction is executing the original
updates, or

while recovery action is being taken

Deferred DB Modification (3/4)

Crashes can occur while:

the transaction is executing the original updates, or
while recovery action is being taken

Example: T, and T, (T, executes before T;):

To: read (A) T; : read (C)
A:-A-50 C:-C-100
write (A) write (O)
read (B)

B:- B+ 50 continued...

write (B)

Crash Recovery with a Log

<T, start> <T, start> <T, start>

<T,, A, 950> <T,, A, 950> <T,, A, 950>

<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>
<T, commit> <T, commit>

<T, start> <T, start>
<T;, C, 600> <T;, C, 600>
<T; commit>

Assume the disk version of the database has
not been updated.

If log on stable storage at time of crash:

(a) No redo actions need to be taken.
(b) redo(T,) must be performed since <T, commit> is
present.

(c) redo(T,) must be performed followed by redo(T;)
since <T, commit> and <7, commit> are present.

