
How Databases Save
Your Data

Blue slides originally ©Silberschatz, Korth and Sudarshan

Modifications & additions by S Bird, J Bryson

Part -I: What’s a
Database

Blue slides originally ©Silberschatz, Korth and Sudarshan

Modifications & additions by S Bird, J Bryson

A first approximation...

• Databases are magic libraries that not only
give you functionality but let you store
information.

• Databases are servers, you can write clients
that access them in many languages.

• Most databases are relational, and their
functions are in SQL, more on that next
lecture.

Part 1: What can go
wrong?

General Risks (and solutions)

w Crackers: sabotage, theft;
w backups, honest staff, secure software, up-to-date

software, logging to detect suspicious activity,
testing, ...

w Failures: lack of business, hardware, network,
shipping, software;
w reliability, redundancy, ...

w Policy changes: laws and taxes catching up
with web commerce;
w monitor legislation, join relevant associations.

w Growth: coping with demand;
w handling concurrent requests, scalable design.

Security Threats (1 of 2)

w Exposure of confidential data
w medical records, passwords, contact details, credit cards, ...
w Solutions:

w Don’t keep this data on the webserver.
w Limit the privileges of the database account used by web-

accessible scripts.
w Require end-users to authenticate themselves, store encrypted

passwords.
w Use SSL (Secure Socket Layer, https).
w Security of database files in the physical filesystem, firewalls,

physical security of the server.

w Data loss
w Web database might contain information that took many

months to collect.
w Loss can be malicious (cracker), inadvertent (admin error) or

due to hardware failure.
w Solutions: security, RAID drives, backups.

Security Threats (2 of 2)

w Data modification
w Changes to an account balance, additional DB privileges.
w Hard to detect.
w Solutions: security, backups, monitoring.

w Denial of service
w Actions designed to make a service inaccessible or very slow.

w Repudiation
w One party to the transaction denies having taken part.
w Solutions: password-based authentication, digital certificates,

digital signatures, certification authorities.
w Software errors

w Poor specifications, false assumptions by developers, poor
testing.

w Solutions: lots of testing, lots of user involvement, contingency
plans.

Part 2: The physical
safety of data

Types of Data Storage
wVolatile storage:

wDoes not survive system crashes.
wExamples: main memory, cache memory.

wNonvolatile storage:
wSurvives system crashes.
wExamples: disk, tape, flash memory,
non-volatile (battery backed up) RAM.

wStable storage:
wA mythical form of storage that survives all
failures.

wApproximated by maintaining multiple copies
on different nonvolatile media stored in
different locations.

Data Storage Hierarchy

1. Primary storage: Fastest media but volatile
(e.g. cache, main memory).

2. Secondary storage: next level in hierarchy,
non-volatile, moderately fast access time (e.g.
flash, magnetic disks).
• also called on-line storage

3. Tertiary storage: lowest level in hierarchy,
non-volatile, slow access time (e.g. magnetic
tape, optical storage).
• also called off-line storage

Types of Storage for Digital Data

Magnetic Disks
w Data is stored on spinning disk, and read/

written magnetically.
w Primary medium for the long-term storage of

data; typically stores entire database.
w Much slower access than main memory, but

much cheaper, and non-voliatile.
wData must be moved from disk to main
memory for quick access by programs, then
written back for storage.

w Survives most power failures and system
crashes – non-volatile. Disk failure can destroy
data, but relatively rare.

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Part 3: Keeping Data
Safe While You Change

It

Stable-Storage Implementation
wChunks of memory are called blocks.
wWhen you change something in a
block, you need to make copies.

wThree possible outcomes of copying a
block:
wSuccessful completion,
wPartial failure – destination block has
incorrect information, or

wTotal failure – destination block was
never updated.

wKeeping data safe requires detecting
& correcting failures.

Fidelity Through Transactions
w A transaction is a unit of program execution

that accesses and possibly updates various data
items.

w A transaction starts with a consistent database.
w During transaction execution the database may

be inconsistent.
w A transaction isn’t committed (done) until you

know the database is consistent.
w Two main issues to deal with:

wFailures, e.g. hardware failures and system
crashes.

wConcurrency, for simultaneous execution of
multiple transactions.
wRemember this from the threading lectures.

Moving Data Around: Definitions

w Physical blocks: blocks residing on the disk.
w Buffer blocks: blocks residing temporarily in

main memory.
w Block movements between disk and main

memory are initiated through the following two
operations:
w input(B) transfers the physical block B to main

memory.
w output(B) transfers the buffer block B to the disk, and

replaces the appropriate physical block there.

Moving Data Around
w Each transaction Ti has its private work-area in

which local copies of all data items accessed
and updated by it are kept.
w Ti's local copy of a data item X is called xi.

w Here we assume (for simplicity) that each data
item is stored in a single block.
wIt doesn’t have to be, there are simple
algorithms for fixing this.

w Transactions are just like the areas we
protected in Java using synch() or locking, see
the ATM example in lecture

Sample Data Access Diagram

x

Y A
B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)

disk

work area
of T1

work area
of T2

x2

Non-volatileVolatile

Moving Data Around (Cont.)
w A transaction transfers data items between

system buffer blocks and its private work-area.
w Transactions

w Perform read(X) while accessing X for the first time;
w All subsequent accesses are to the local copy.
w After last access, transaction executes write(X).

w output(BX) need not immediately follow
write(X). System can perform the output
operation when it deems fit.

w Reminder: Volatile memory is faster, but more
vulnerable!

w But until BX is updated on disk, it’s not safe, so
the transaction isn’t finished (committed).

Recovery from Failures

wTo ensure data is really saved on non-
volatile memory before commitment,
wfirst output a description of the
modifications to stable storage without
modifying the database itself.

wThen update the database.
wTwo ways to do this:

wshadow-paging (naïve), and
wlog-based recovery.

Shadow Database
w Assume only one transaction is active at a time.
w db_pointer always points to the current consistent

copy of the database.
w Updates made on a copy of the database. Pointer

moved to updated copy after transaction reaches
partial commit & pages written.

w On transaction failure, old consistent copy pointed
to by db_pointer is used, and the shadow copy is
deleted.

Assumes disks don’t fail.
Useful for text editors, but
extremely inefficient for large
database -- executing a
single transaction requires
copying the entire database!

Log-Based Recovery
w A log is kept on stable storage.
w A log is a sequence of log records, which

record the update activities on the database.
w When transaction Ti starts, it registers itself by writing a

<Ti start> log record.

w Before Ti executes write(X), a log record <Ti, X, V1, V2>
is written, where V1 is the value of X before the write, and
V2 is the value to be written to X.

w When Ti finishes its last statement, the log record
<Ti commit> is written. This is when the transaction Ti is
committed!

w Periodically output entire database, then you can truncate
the log or just write this fact to the log.

w Log records must be written directly to stable
storage (they can’t be buffered).

Deferred DB Modification (1/4)
w Deferred database modification scheme

records all modifications to the log, but defers
all writes to after a partial commitment.

w Transaction starts by writing <Ti start> record
to log.

w A write(X) operation results in a log record
<Ti, X, V> being written, where V is the new
value for X.
w Note: old value is not needed for this scheme.

w The real write is not performed on X at this
time, but is deferred.

w When Ti partially commits, <Ti commit> is
written to the log.

w Finally, the log records are used to actually
execute the previously deferred writes.

Deferred DB Modification (2/4)
wDuring recovery, a transaction needs to be

redone if and only if both <Ti start>
and<Ti commit> are there in the log.

wRedoing a transaction Ti (redo Ti) sets the
value of all data items updated by the
transaction to the new values.

wCrashes can occur while:
w the transaction is executing the original

updates, or
wwhile recovery action is being taken

Deferred DB Modification (3/4)
w Crashes can occur while:

w the transaction is executing the original updates, or
w while recovery action is being taken

w Example: T0 and T1 (T0 executes before T1):
 T0: read (A) T1 : read (C)
 A: - A - 50 C:- C- 100
 write (A) write (C)
 read (B)
 B:- B + 50 continued…
 write (B)

Crash Recovery with a Log

w Assume the disk version of the database has
not been updated.

w If log on stable storage at time of crash:
 (a) No redo actions need to be taken.
 (b) redo(T0) must be performed since <T0 commit> is

 present.
 (c) redo(T0) must be performed followed by redo(T1)

 since <T0 commit> and <Ti commit> are present.

