
Joanna J. Bryson
University of Bath, United Kingdom

Multiple, Conflicting Goals
Intro to Game AI

Intelligent Control
and Cognitive Systems

brings you...

Outline

• How Game AI Is Hard in Special Ways

• How Game AI Approach Reality: Multiple
Conflicting Goals

• One possible solution in detail

Introduction to Game AI

• Make something smart and fun to interact
with.

• Don’t have it win (or lose) all the time.

• Don’t use any CPU

...an Example of Multiple, Conflicting Goals

Game AI – Problems

• Solving AI is hard.

• Game worlds are a total big fake.

• No resources really needed:

• space, time, energy, sleep, emotions,
collisions all need to be faked…

• probably not by simulation,

• …and Not using any CPU.

Collision Detection

• In the real world,
can simulate very
animal-like
behaviour with
very unanimal like
componenents.

• e.g. one-legged
“kangaroo” because Laws of Physics

THE PROBLEM
Floating-point arithmetic

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/

...of BEHAVIOUR in VIRTUAL REALTY is…

Floating-point numbers
Real numbers must be approximated

Floating-point numbers
Fixed-point numbers (integers)
Rational numbers

Homogeneous representation

If we could work in real arithmetic, I
wouldn’t be having this talk!

Floating-point numbers

Irregular number line
Spacing increases the farther away from
zero a number is located

Number range for exponent k+1 has
twice the spacing of the one for exponent
k

Equally many representable numbers from
one exponent to another

0

0

Floating-point numbers
Consequence of irregular spacing:

–1020 + (1020 + 1) = 0
(–1020 + 1020) + 1 = 1

Thus, not associative (in general):
(a + b) + c != a + (b + c)

Source of endless errors!

Floating-point numbers
All discrete representations have non-
representable points

A

BC

D

Q

P

The floating-point grid
In floating-point, behavior changes based on

position, due to the irregular spacing!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Continuous Collision
Detection

David Knott
COMP 259 class presentation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Why Perform Continuous CD?

•The exact time and location of first contact
may need to be found.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Why Perform Continuous CD?

•Sampling at discrete intervals may miss a
collision entirely.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Why Perform Continuous CD?

•Sampling at discrete intervals may give the
wrong collision!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Why Perform Continuous CD?

•Most animation systems use
backtracking methods
♦Try to find point of first contact by binary search.
♦Subject to all problems from previous slides
♦Especially poor for non-solid objects (eg. cloth)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Types of motion

•Almost all CCD algorithms assume linear
motion over a single time step

•Non-linear motion makes CCD
computation much more expensive
♦True for both approximate and exact methods

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept-volumes

•The motion of a primitive through
space “sweeps out” a volume over
a time interval
♦Similar to extrusion with an added

rotational component.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept Volumes

•Swept-Volumes of moving objects may
be compared against each other

•This is a binary test for collision
♦Does not reveal when or where collision occurs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept Volumes

• Swept volumes are a sufficient but not
necessary condition for determining if objects
are collision-free
♦Swept volumes may overlap, even when the objects

have not collided
♦Subdivision is needed
♦Or consider relative motion

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept volumes in 3D space

•1D - line
•2D – prism

•3D
♦becomes very complicated very quickly

a

b

a'

b'

a a'

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept Volumes

•An object in n dimensions sweeps
out a volume in n+1 dimensions

•These volumes are very expensive
to compute.
♦Even harder with arbitrary rotations.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept Volumes

Source: “Fast Swept Volume Approximation…”
 Y. Kim – ACM Solid Modelling 2003

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Approximate CCD

•Rough (conservative) CCD tests can be
performed via bounding volumes of the
swept volumes

•Hierarchies of bounding volumes may be
constructed

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Convex Hulls of Swept Volumes

“A Safe Swept-Volume Approach to
Collision Detection”

 A. Foisy & V. Hayward
 Int. Symp. on Robotics Research 1994

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Convex Hulls of Swept Volumes

•The AABB of a moving vertex

• Can find the convex hull of the AABBs of
all vertices

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Convex Hulls of Swept Volumes

• The convex hull of vertex AABBs is also a
convex approximation to the swept volume of
the moving object

• Can consider hierarchies of these

But NOT the convex hull
of the AABBs.

Game AI: More Problems

• What human users see is not rendered for AI.

• No signs to read, these are just “textures”.

• Anything you aren’t intended to touch you will
not be able to feel.

• There is generally no way to move to the
majority of space.

Game AI:
Solutions• Lots of hacks &

abstractions.

• Seldom really touch
anything e.g. picking
up when proximate.

• Reduce path
planning to using A*
on way points.

• Still left with the
minor problem of AI.

Outline

• How Game AI Is Hard in Special Ways

• How Game AI Approach Reality: Multiple
Conflicting Goals

• One possible solution in detail

Tyrrell (1993)

Extended Rosenblatt and Payton Free-Flow Hierarchy
N NE E SE S SW W NW

UT
Reproduce

1.4

T U

Move Actions
Mate

-0.08

Court

P. Mate Rand. Dir P. Den R. Den All Dirs

Clean Leave
this Sq

CleanSleep

Mate Court

Approach
Mate

Explore For Mates

Explore

Sleep

Approach
P. Den

Approach
R. Den

Sleep
in Den Clean

Keep

DirtinessLow HealthNight Proxfrom Den
Distance

-0.10

-0.05

-0.01

-0.05 -0.05
-0.15

Courted
Mate in Sq

Mate in Sq
Receptive

No Den
in Sq

Den
in Sq

No Den
in Sq

in Sq
Den

-0.02

-0.02
-0.25

-0.30
-0.04

= small negative activation

= positive activation

= small positive activation

= zero activation

= large positive activation
(1.0)

Multiple Conflicting Goals

• Tyrrell’s (1993) Simulated Environment (SE):
eat 3 kinds of nutrients & water, avoid
ungulates & predators, sleep, clean, mate.

• Robocup: stay in bounds, defend, score.

• Capture The Flag (CTF): Find enemy flag, don’t
get shot, defend own flag, find weapon, find
health, help team mates.

Will Cognitive
Architectures Help?

(Revision of Lecture 4)

Imagine authoring in these…

Soar
• Has been

adopted for
game design.

• CPU heavy and
not really
designed for
programming.

• “teaching by
brain surgery”–
Olin Shivers

ACT-R Research
Programme

• Similarly to
Soar a lot of
overhead for
designing game
AI, but has
been
demonstrated
e.g. in
RoboCup.

Retrieval Buffer
(VLPFC)

Goal Buffer
(DLPFC)

Manual Motor
(Motor)

Intentional Module
(not identified)

External World

Matching (Striatum)

Execution (Thalamus)

Selection (Pallidum)

P
ro

d
u

c
ti

o
n

s
(B

a
s
a
l
G

a
n

g
li
a
)

Declarative Module
(Temporal / Hippocampus)

Visual Buffer
(Parietal)

Visual Module
(Occipital/Parietal)

Manual Module
(Motor/Cerebellum)

Spreading Activation
Networks

• Designed for
multiple goals.

• But doesn’t
converge to
consumatory
actions if too
many steps in
sequence
required.

Tyrrell (1993)

Extended Rosenblatt and Payton Free-Flow Hierarchy
N NE E SE S SW W NW

UT
Reproduce

1.4

T U

Move Actions
Mate

-0.08

Court

P. Mate Rand. Dir P. Den R. Den All Dirs

Clean Leave
this Sq

CleanSleep

Mate Court

Approach
Mate

Explore For Mates

Explore

Sleep

Approach
P. Den

Approach
R. Den

Sleep
in Den Clean

Keep

DirtinessLow HealthNight Proxfrom Den
Distance

-0.10

-0.05

-0.01

-0.05 -0.05
-0.15

Courted
Mate in Sq

Mate in Sq
Receptive

No Den
in Sq

Den
in Sq

No Den
in Sq

in Sq
Den

-0.02

-0.02
-0.25

-0.30
-0.04

= small negative activation

= positive activation

= small positive activation

= zero activation

= large positive activation
(1.0)

Subsumption
(Brooks 1986)
• Multiple goals, one

per level, but…

• Conflict only handled
by subsumption,
strict linear priority.

• Best for maintaining
concurrent goals, not
alternating between
conflicting ones.

What Does Nature
Do?

• Most animals allocate a packet of time to
each goal (persistence vs. dithering, see
emotion lecture next week.)

• E.g. (from McFarland 1981) even very
hungry Siamese fighting fish will alternate
time between eating and patrolling.

• Subsumption (and any architecture with
perceptual aliasing issues) can’t support this.

Belief, Desires,
Intentions (BDI)• PRS really

expected to
pursue one
goal at a time.

• Other BDI
does get
applied to
games e.g.
StarCraft
competition,
Robocup.

Game AI as Art

• Cognitive architectures are designed for
multiple conflicting goals.

• OK for science, maybe domestic robotics.

• Game NPC ideally entertainment ∴ art.

• Require authorship.

• Want prestige (not just ££) of films.

Systems AI: Motivation

• The more your AI does, the more CPU it
uses.

• The less your AI knows in advance, the
more things it has to try in order to learn.

⟹ The more you can help programmers
design / inform their AI, the better the AI
will be.

What Do AI Architectures
Provide?

• Search

• May provide mechanisms for determining
action selection and/or machine learning.

• Development methodologies:

• Describe ontologies / representations;

• Recommend development strategies.

iCub architecture
(Vernon 2010)

Outline

• How Game AI Is Hard in Special Ways

• How Game AI Approach Reality: Multiple
Conflicting Goals

• One possible solution in detail

Game AI Today

• Most popular: FSM + situation-specific
learning & planning. E.g.

• Learn human player’s ability level

• A* planning for navigating while watched.

• Up & Coming: Behaviour Trees

• These are just action selection, more to
systems AI than that.

Behavior Oriented Design
• All search (learning, planning) is done within

modules with specialized representations.

• Specialized representations promote reliability
of search; also determine decomposition.

• Modules provide perception, action, memory.
Arbitration via hierarchical dynamic plans.

• Iterative / agile test & development cycle.

Bryson & Thórisson (2000), Bryson (2001,
2003), Grow et al (FDG 2014)

BOD Architecture
b1

b2

b3

b4

a2

a3

a4

a5

AS

a1

a3

a5

Modular behaviors generate actions, arbitrated where
necessary by Action Selection based on hierarchical plans

BOD Features & Origins

• Differs from Subsumption Architecture by
allowing 1) centralised, hierarchical action
selection, 2) memory & 3) refactoring. Keeps
lightweight perception specialised to action.

• Differs from conventional OOD by focussing
on motivated action – hierarchical plans specify
priorities for an agent. Keeps code reuse,
module decomposition, SE focus.

Keeps modularity (key to both approaches.)

Hierarchical Action
Selection

Parallel-rooted, Ordered, Slip-stack Hierarchical
(POSH) action selection:

• Some things need to be checked at all times:
drive collection.

• Some things only need considering in
particular context: competences.

• Some things reliably follow from others:
action patterns.

• Nomad 2000

• Sonars, IR, Bumpers,
Odometry

(Bryson 1997, 2001)

Joanna J. Bryson “The Behavior-Oriented Design of Modular
Agent Intelligence”, Agent Technologies, Infrastructures, Tools,
and Applications for e-Services, R. Kowalszyk, J. P. Müller,
H. Tianfield and R. Unland, eds., pp. 61–76, Springer, 2003.

From Lecture 7
(Learning & Perception)

Direction
current
preferred
�directions

narrow, has dir?, pick open dir

correct dir, lose dir, move, move view? ��
⌥ ⌥ ⌥⇥

⇥

⇥

⇥
⌥ ⌥ ⌥
Action

Selection

direction
which-direction
sense-ring-mask

move, move view?

⌥⌥⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅

P-Memory

sonar-history
sonar-expect �� C-Sense

sensor-ring-vector

csense

⇧⇧

csense⇧⇧⇧⇧⇧

��⇧⇧⇧⇧

compound-sense
����������

⇤⇤����������

Bump

�bumps

reg bump,
bumped

⌃⌃⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤

bump-fuse⌦⌦

⌥ ⌥⇥
⇥

⇥
⇥

⌥ ⌥Robot

sonar⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃

 ⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃
infra-red

⌅⌅

bumpers������������

⇥⇥�����������

bump
x, y
next�

bump-fuse

⌅⌅

life (D)

talk [1/120 Hz]

(worth talking�)

speak

sense (C) [7 Hz]

bump (bumped�) yelp reg bump back off clear bump lose direction

look compound sense

walk (C)

halt (has direction�)

(move view ’blocked)

lose direction

start (has direction⇥) pick open dir

continue move narrow (move view ’clear) correct dir

wait snore sleep

drive
collection

life (D)

talk [1/120 Hz]

(worth talking�)

speak

sense (C) [7 Hz]

bump (bumped�) yelp reg bump back off clear bump lose direction

look compound sense

walk (C)

halt (has direction�)

(move view ’blocked)

lose direction

start (has direction⇥) pick open dir

continue move narrow (move view ’clear) correct dir

wait snore sleep

competence

life (D)

talk [1/120 Hz]

(worth talking�)

speak

sense (C) [7 Hz]

bump (bumped�) yelp reg bump back off clear bump lose direction

look compound sense

walk (C)

halt (has direction�)

(move view ’blocked)

lose direction

start (has direction⇥) pick open dir

continue move narrow (move view ’clear) correct dir

wait snore sleep

action pattern

life (D)

talk [1/120 Hz]

(worth talking�)

speak

sense (C) [7 Hz]

bump (bumped�) yelp reg bump back off clear bump lose direction

look compound sense

walk (C)

halt (has direction�)

(move view ’blocked)

lose direction

start (has direction⇥) pick open dir

continue move narrow (move view ’clear) correct dir

wait snore sleep

sense actprimitives

walk (C)

halt (has direction�)

(move view ’blocked)

lose direction

cogitate route (C)

enter dp (in dp ⇥)

(entered dp⇥)

lose direction greet dp

leave dp (in dp �)

(entered dp�)

dismiss dp

pick direction (C)

look up

(untried near neighbor

�)

pick near neighbor

keep going

(continue untried�)

pick previous direction

desperate look up

(untried far neighbor

�)

pick further neighbor

start (has direction⇥) ask directions

continue move narrow (move view ’clear) correct dir

expanded
competence

DP-Map

�landmarks pick near neighbor, pick further neighbor

untried near neighbor?, untried far neighbor? ��
⇤ ⇤ ⇤�

�

�

�
⇤ ⇤ ⇤
Action

Selection

DP-Land
x,y
in-dir
out-dir

in dp, entered dp⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅

⇥⇥⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅

E-Memory

�directions
�times

done-that⇥⇥⇥⇥

⌃⌃⇥⇥⇥⇥

continue untried
keep going
⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃

⌅⌅⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃

⇤ ⇤ ⇤ ⇤ ⇤�

�

�

�
⇤ ⇤ ⇤ ⇤ ⇤

Robot
(and C-Sense)

csense, odometry

⇧⇧

direction, time⇧⇧⇧⇧⇧⇧⇧

⇤⇤⇧⇧⇧⇧⇧⇧⇧⇧

Things All Successful
Real-Time AI has

1. Modularity

2. A means to redirect attention rapidly

3. A means to specify action selection for
fiddly detailed subplans.

(Bryson 2000, JETAI)

Hierarchical Action
Selection

Parallel-rooted, Ordered, Slip-stack Hierarchical
(POSH) action selection:

• Some things need to be checked at all times:
drive collection.

• Some things only need considering in
particular context: competences.

• Some things reliably follow from others:
action patterns.

Redirect Attention

} Detailed
AS

Modules not a part of AS

POSH & Behavior Trees
• Behavior Trees (Mateas et al 2003-present)

currently a dominant approach to game AI,
replacing FSM as leading form of control
(AIGameDev.com).

• Like POSH: action≃act, condition≃sense,
sequence≃action pattern, priority≃competence,
parallel (supported throughout, no special
name); temporal decorators: drive scheduling.

• Any hierarchical AS will work for BOD.

BOD Development Cycle
1. Initial decomposition ⇒ specification.

2. Scale the system.

i. Code one behavior and/or plan.

ii. Test and debug code (test earlier plans).

iii. Simplify the design.

3. Revise the specification.

4. Iterate.

BOD Development Cycle
1. Initial decomposition ⇒ specification.

2. Scale the system.

i. Code one behavior and/or plan.

ii. Test and debug code (test earlier plans).

iii. Simplify the design.

3. Revise the specification.

4. Iterate.

1. Specify (high-level) what the agent will do.

2. Describe activities as sequences of actions.
competences and action patterns

3. Identify sensory and action primitives from
these sequences.

4. Identify the state necessary to enable the
primitives, cluster primitives by shared
state. behavior modules

5. Identify and prioritize goals / drives. drive
collection

6. Select a first (next) behavior to implement.

Simplify the Design
Trade off representations: plans vs. behaviors

• Use simplest plan structure unless
redundancy (split primitives for sequence,
add variable state in modules).

• If competences too complicated, introduce
primitives or create more hierarchy.

• Split large behaviors, use plans to unify.

• All variable state in modules (deictic).

Simplify the Design

Use the simplest representations.

• Plans:

• primitives, action patterns, competences.

• drives only if need to always check.

• Behavior modules / memory:

• none, deictic, specialized, general.

(Bryson, AgeS 2003)

BOD Arch. Lessons
• Modularity: problem spaces, combat

combinatorics, allow locally-optimal
representations.

• Should use ordinary (OO) code (arbitrarily
powerful but also access to primitives.)

• Hierarchical action selection for arbitration.

• Dedicated, high-frequency goal / attention
switching, compensates for hierarchical AS.

• Agile development, refactoring (Beck 2000).

Modularity is Good, But
Not Enough

Get Fuzzy (Conley 2006)

