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brings you...



Outline

• How Game AI Is Hard in Special Ways

• How Game AI Approach Reality:  Multiple 
Conflicting Goals

• One possible solution in detail



Introduction to Game AI

• Make something smart and fun to interact 
with.

• Don’t have it win (or lose) all the time.

• Don’t use any CPU

...an Example of Multiple, Conflicting Goals



Game AI – Problems

• Solving AI is hard.

• Game worlds are a total big fake.

• No resources really needed: 

• space, time, energy, sleep, emotions, 
collisions all need to be faked… 

• probably not by simulation,

• …and Not using any CPU.



Collision Detection

• In the real world, 
can simulate very 
animal-like 
behaviour with 
very unanimal like 
componenents.

• e.g. one-legged 
“kangaroo” because Laws of Physics



THE PROBLEM
Floating-point arithmetic

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/

...of BEHAVIOUR in VIRTUAL REALTY is…



Floating-point numbers
Real numbers must be approximated

Floating-point numbers
Fixed-point numbers (integers)
Rational numbers

Homogeneous representation

If we could work in real arithmetic, I 
wouldn’t be having this talk!



Floating-point numbers

Irregular number line
Spacing increases the farther away from 
zero a number is located

Number range for exponent k+1 has 
twice the spacing of the one for exponent 
k

Equally many representable numbers from 
one exponent to another

0



0

Floating-point numbers
Consequence of irregular spacing:

–1020 + (1020 + 1) = 0
(–1020 + 1020 ) + 1 = 1

Thus, not associative (in general):
(a + b) + c != a + (b + c)

Source of endless errors!



Floating-point numbers
All discrete representations have non-
representable points

A

BC

D

Q

P



The floating-point grid
In floating-point, behavior changes based on 

position, due to the irregular spacing! 
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Continuous Collision 
Detection

David Knott
COMP 259 class presentation
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Why Perform Continuous CD?

•The exact time and location of first contact 
may need to be found.
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Why Perform Continuous CD?

•Sampling at discrete intervals may miss a 
collision entirely.
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Why Perform Continuous CD?

•Sampling at discrete intervals may give the 
wrong collision!
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Why Perform Continuous CD?

•Most animation systems use 
backtracking methods
♦Try to find point of first contact by binary search.
♦Subject to all problems from previous slides
♦Especially poor for non-solid objects (eg. cloth)
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Types of motion

•Almost all CCD algorithms assume linear 
motion over a single time step

•Non-linear motion makes CCD 
computation much more expensive
♦True for both approximate and exact methods
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Swept-volumes

•The motion of a primitive through 
space “sweeps out” a volume over 
a time interval
♦Similar to extrusion with an added 

rotational component.
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Swept Volumes

•Swept-Volumes of moving objects may 
be compared against each other

•This is a binary test for collision
♦Does not reveal when or where collision occurs
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Swept Volumes

• Swept volumes are a sufficient but not 
necessary condition for determining if objects 
are collision-free
♦Swept volumes may overlap, even when the objects 

have not collided
♦Subdivision is needed
♦Or consider relative motion
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Swept volumes in 3D space

•1D - line
•2D – prism

•3D
♦becomes very complicated very quickly

a

b

a'

b'

a a'
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Swept Volumes

•An object in n dimensions sweeps 
out a volume in n+1 dimensions

•These volumes are very expensive 
to compute.
♦Even harder with arbitrary rotations.
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Swept Volumes

Source: “Fast Swept Volume Approximation…”
    Y. Kim – ACM Solid Modelling 2003
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Approximate CCD

•Rough (conservative) CCD tests can be 
performed via bounding volumes of the 
swept volumes

•Hierarchies of bounding volumes may be 
constructed
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Convex Hulls of Swept Volumes

“A Safe Swept-Volume Approach to 
Collision Detection”

 A. Foisy & V. Hayward
 Int. Symp. on Robotics Research 1994 
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Convex Hulls of Swept Volumes

•The AABB of a moving vertex

• Can find the convex hull of the AABBs of 
all vertices
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Convex Hulls of Swept Volumes

• The convex hull of vertex AABBs is also a 
convex approximation to the swept volume of 
the moving object

• Can consider hierarchies of these

But NOT the convex hull 
of the AABBs.



Game AI: More Problems

• What human users see is not rendered for AI.

• No signs to read, these are just “textures”.

• Anything you aren’t intended to touch you will 
not be able to feel.

• There is generally no way to move to the 
majority of space.



Game AI:
Solutions• Lots of hacks & 

abstractions.

• Seldom really touch 
anything e.g. picking 
up when proximate.

• Reduce path 
planning to using A* 
on way points.

• Still left with the 
minor problem of AI.
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Tyrrell (1993)

Extended Rosenblatt and Payton Free-Flow Hierarchy
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Multiple Conflicting Goals

• Tyrrell’s (1993) Simulated Environment (SE): 
eat 3 kinds of nutrients & water, avoid 
ungulates & predators, sleep, clean, mate.

• Robocup: stay in bounds, defend, score.

• Capture The Flag (CTF):  Find enemy flag, don’t 
get shot, defend own flag, find weapon, find 
health, help team mates.



Will Cognitive 
Architectures Help? 

(Revision of Lecture 4)

Imagine authoring in these…



Soar
• Has been 

adopted for 
game design.

• CPU heavy and  
not really 
designed for 
programming.

• “teaching by 
brain surgery”–
Olin Shivers



ACT-R Research 
Programme

• Similarly to 
Soar a lot of 
overhead for 
designing game 
AI, but has 
been 
demonstrated 
e.g. in 
RoboCup.

Retrieval Buffer
(VLPFC)

Goal Buffer
(DLPFC)

Manual Motor
(Motor)

Intentional Module
(not identified)

External World

Matching (Striatum)

Execution (Thalamus)

Selection (Pallidum)

P
ro

d
u

c
ti

o
n

s
(B

a
s
a
l
G

a
n

g
li
a
)

Declarative Module
(Temporal / Hippocampus)

Visual Buffer
(Parietal)

Visual Module
(Occipital/Parietal)

Manual Module
(Motor/Cerebellum)



Spreading Activation 
Networks 

• Designed for 
multiple goals.

• But doesn’t 
converge to 
consumatory 
actions if too 
many steps in 
sequence 
required. 



Tyrrell (1993)

Extended Rosenblatt and Payton Free-Flow Hierarchy
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Subsumption 
(Brooks 1986)
• Multiple goals, one 

per level, but…

• Conflict only handled 
by subsumption, 
strict linear priority.

• Best for maintaining 
concurrent goals, not 
alternating between 
conflicting ones.



What Does Nature 
Do?

• Most animals allocate a packet of time to 
each goal (persistence vs. dithering, see 
emotion lecture next week.)

• E.g. (from McFarland 1981) even very 
hungry Siamese fighting fish will alternate 
time between eating and patrolling.

• Subsumption (and any architecture with 
perceptual aliasing issues) can’t support this.



Belief, Desires, 
Intentions (BDI)• PRS really 

expected to 
pursue one 
goal at a time.

• Other BDI 
does get 
applied to 
games e.g. 
StarCraft 
competition, 
Robocup.



Game AI as Art

• Cognitive architectures are designed for 
multiple conflicting goals.

• OK for science, maybe domestic robotics.

• Game NPC ideally entertainment ∴ art.

• Require authorship.

• Want prestige (not just ££) of films.



Systems AI: Motivation

• The more your AI does, the more CPU it 
uses.

• The less your AI knows in advance, the 
more things it has to try in order to learn.

⟹ The more you can help programmers 
design / inform their AI, the better the AI 
will be.



What Do AI Architectures 
Provide?

• Search

• May provide mechanisms for determining 
action selection and/or machine learning.

• Development methodologies:

• Describe ontologies / representations;

• Recommend development strategies.



iCub architecture
(Vernon 2010)
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Game AI Today

• Most popular:  FSM + situation-specific 
learning & planning.  E.g.

• Learn human player’s ability level

• A* planning for navigating while watched.

• Up & Coming: Behaviour Trees

• These are just action selection, more to 
systems AI than that.



Behavior Oriented Design
• All search (learning, planning) is done within 

modules with specialized representations.

• Specialized representations promote reliability 
of search; also determine decomposition.

• Modules provide perception, action, memory. 
Arbitration via hierarchical dynamic plans.

• Iterative / agile test & development cycle.

Bryson & Thórisson (2000), Bryson (2001, 
2003),  Grow et al (FDG 2014)



BOD Architecture
b1

b2

b3

b4

a2

a3

a4

a5

AS

a1

a3

a5

Modular behaviors generate actions, arbitrated where 
necessary by Action Selection based on hierarchical plans



BOD Features & Origins

• Differs from Subsumption Architecture by  
allowing 1) centralised, hierarchical action 
selection, 2) memory & 3) refactoring.  Keeps 
lightweight perception specialised to action.

• Differs from conventional OOD by focussing 
on motivated action – hierarchical plans specify 
priorities for an agent.  Keeps code reuse, 
module decomposition, SE focus.

Keeps modularity (key to both approaches.)



Hierarchical Action 
Selection

Parallel-rooted, Ordered, Slip-stack Hierarchical  
(POSH) action selection:

• Some things need to be checked at all times: 
drive collection.

• Some things only need considering in 
particular context:  competences. 

• Some things reliably follow from others: 
action patterns.



• Nomad 2000

• Sonars, IR, Bumpers, 
Odometry

(Bryson 1997, 2001)

Joanna J. Bryson “The Behavior-Oriented Design of Modular 
Agent Intelligence”, Agent Technologies, Infrastructures, Tools, 
and Applications for e-Services, R. Kowalszyk, J. P. Müller,
H. Tianfield and R. Unland, eds., pp. 61–76, Springer, 2003.

From Lecture 7 
(Learning & Perception)
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walk (C)
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DP-Map
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Things All Successful 
Real-Time AI has

1. Modularity

2.  A means to redirect attention rapidly

3. A means to specify action selection for 
fiddly detailed subplans.

(Bryson 2000, JETAI)



Hierarchical Action 
Selection

Parallel-rooted, Ordered, Slip-stack Hierarchical  
(POSH) action selection:

• Some things need to be checked at all times: 
drive collection.

• Some things only need considering in 
particular context:  competences. 

• Some things reliably follow from others: 
action patterns.

Redirect Attention

} Detailed 
AS

Modules not a part of AS



POSH & Behavior Trees
• Behavior Trees (Mateas et al 2003-present) 

currently a dominant approach to game AI, 
replacing FSM as leading form of control 
(AIGameDev.com).

• Like POSH: action≃act, condition≃sense, 
sequence≃action pattern, priority≃competence, 
parallel (supported throughout, no special 
name);  temporal decorators:  drive scheduling.

• Any hierarchical AS will work for BOD.



BOD Development Cycle
1. Initial decomposition ⇒ specification. 

2. Scale the system. 

i. Code one behavior and/or plan. 

ii. Test and debug code (test earlier plans). 

iii. Simplify the design. 

3. Revise the specification. 

4. Iterate.



BOD Development Cycle
1. Initial decomposition ⇒ specification. 

2. Scale the system. 

i. Code one behavior and/or plan. 

ii. Test and debug code (test earlier plans). 

iii. Simplify the design. 

3. Revise the specification. 

4. Iterate.



1. Specify (high-level) what the agent will do. 

2. Describe activities as sequences of actions.  
competences and action patterns

3. Identify sensory and action primitives from 
these sequences.

4. Identify the state necessary to enable the 
primitives, cluster primitives by shared 
state. behavior modules 

5. Identify and prioritize goals / drives.  drive 
collection

6. Select a first (next) behavior to implement.



Simplify the Design
Trade off representations: plans vs. behaviors

• Use simplest plan structure unless 
redundancy (split primitives for sequence, 
add variable state in modules).

• If competences too complicated, introduce 
primitives or create more hierarchy.

• Split large behaviors, use plans to unify.

• All variable state in modules (deictic).



Simplify the Design

Use the simplest representations.

• Plans: 

• primitives, action patterns, competences.

• drives only if need to always check.

• Behavior modules / memory:

• none, deictic, specialized, general.

(Bryson, AgeS 2003)



BOD Arch. Lessons
• Modularity:  problem spaces, combat 

combinatorics, allow locally-optimal 
representations.  

• Should use ordinary (OO) code (arbitrarily 
powerful but also access to primitives.)

• Hierarchical action selection for arbitration.

• Dedicated, high-frequency goal / attention 
switching, compensates for hierarchical AS.

• Agile development, refactoring (Beck 2000).



Modularity is Good, But 
Not Enough

Get Fuzzy (Conley 2006)


