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Simulation Controversy

® Premise: Al has failed (so far).
® Cause: Solving the wrong problems.

® Facilitator: Simulation

(Brooks 1986, 1991)



® Simulations describe the problem.

® |f you really understood the problem, the
solution is a SMOP.

® + No Al = Getting the problem wrong.

® Simulations simpler than the real world.

® Apparent complexity of intelligence is
just a reflection of complexity of the
world. Emergence from interaction.



Ubiquitous Herb Simon
Ant Slide
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The complexity of an ant’s path on a beach is due to
the beach more than the ant.
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® Simulations no longer bespoke .. harder to
cheat.

® Robots also have orders of magnitude less
input & output mechanisms than NI.

® Simulated environment should be viewed &
reviewed as part of the theory.



Simulation Controversy

® Premise: Al has failed (so far). Really"
® Cause: Solving the wrong problems.

® [acilitator: Simulation

(Brooks 1986, 1991)



Google search vs the Turing Test (David Willshaw &
Bob French examples)

Google cars (sensing, reaction, planning)
Siri (speech and plan recognition, Internet Actions)

Watson (learning from texts, understanding queries)



Simulation Controversy

® Premise: Al has failed (so far).

® Cause: Solving the wrong problems.

® Facilitator: Simulation Maybe”

(Brooks 1986, 1991)
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® An animal or an animat ( ), or

® A module of a program, treated
anthropomorphically (e.g. only
communicates to other parts through
language, has beliefs, goals) for software
engineering reasons ( ), or

® A simple entity representing an individual

(m=),



really

® Philosophy defines an agent as an
actor in the world, something
that facilitates change,
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hires

® c.g.chemical agents.
® Agency implies responsibility and

intentionality, o
® c.g.the Principle Agent =

interest

Problem in Political Science. e

interest

Mister XOOO, wikipedia



Communities using

the term ‘agent’

*Multi-Agent Systems * |n contrast to “Good

*[ogic and software Old-Fashioned
engineering - Al” (GOFAI)
°La.nguages, negotiation, e Not that new (1985-)
voting, " Modular, embodied,
optimality(VVooldridge dynamic (Brooks 1986)

and Jennings 1995)

. Agent-Based Modelling
* Study emergent, social effects; use very simple agents
* Few real programmers (Axelrod & Hamilton 1981)



What are agents for?

*Funding and Standard
committees

bots and coghitive
s (e.g. Roomba,

*Distribute Aibo, iCub)
Internet tertainment, VR,
*Want games

useful. Want to create

human-level Al.

* Science, published in serious journals, e.g. Nature,
Science, Animal Behaviour, International Relations.

° Also used in public'policy, consulting, logistics.

*  Want to be the next Operations Research (OR).
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® A simulation is a hypothesis like any other.

® Thesis / model specified so completely it
can be run on a computer.

® Consequences of model assessed by
sampling.

® Model behaviour compared to target
system’s using standard hypothesis
testing.



® The output of a model is not data about
the world!

® Data about the hypothesis.
® Predictions of the hypothesis.

® Simulations are new, some people make

mistakes here (e.g. Hemelrijk et al, Behaviour
2005; cf. de Vries, Behaviour, 2009).



® Simulations are one form of modelling.

® Other forms of modelling have been
around longer, e.g. differential equations.

® Excellent text on modelling: Kokko (2007),
Modelling for Field Biologists, CUP.

® “We use models because our brains
aren’t big enough to understand all the
consequences of our theories.”



® People (not just Brooks) often complain
that a model leaves out a salient detail.

® A map of Germany that leaves out no
details is the same size as Germany.

® Akin to overfitting—utility requires
generality.

® Need to know a model’s purpose.



® Describe essential features of the
environment.

® Specify the behavior of individuals.

® See if the consequences of individuals acting
in an environment are what you predicted.



® As with any theory, be as general as you
can be and still get the behaviour you are
trying to explain.

® |[f two models both predict data equally
well, the simplest model wins.



Science Is Never That
Easy!

® “Be as general as you can be and still get
the behavior you are trying to explain.”

® |n fact, may start at level of intuition, then
simplify.

® “If two models both predict data equally
well, the simplest model wins.”

® Simplicity/accuracy tradeoff can be tricky.



True of All Science, Not
Just ABM

® “Be as general as you can be and still get
the behavior you are trying to explain.”

® |n fact, may start at level of intuition, then
simplify.

® “If two models both predict data equally
well, the simplest model wins.”

® Simplicity/accuracy tradeoff can be tricky.



® |ust trying to build the model may make
you realize there were things you didn’t
know about your target system.



® |ust trying to build the model may make
you realize there were things you didn’t
know about your target system.

® |f you match the world in more ways than
you predicted, then this is convergent
evidence for your theory.
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® Theory building is an
essential step of science.

® The process of building a
simulation may uncover
incompleteness or
fallacies in a model.
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e.g.Whitehouse’s Modes Theory of Religiosity




“Emergent” Outcomes
Add Evidence

transitive inference

™ Action find-color, reward-found, new-test, apparatus
. test-board
Selection _ inish- _
LS no-test, finish-test, save-result, rewarded reward

grasping, noises,
grasp-seen
05-

target-chosen, focus-rule, pick-block,
monkey priority-focus, rules-from-reward
visual-attention

ha nd \
look-a
sequence rule-learner
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A T (Bryson & Leong, Animal

Cognition 2007)
T Joanna J. Bryson and Jonathan C. S. Leong “Primate Errors in
T T T Transitive ‘Inference’” Animal Cognition, 10(1):1-15, January 2007.




Comparison to Data

7

Table 2 Production-rule-stack equivalents to solutions by Saimiri sciureus subjects (last column) and by two-tier Al subjects undergoing
various forms of training*

Regime starting £D Regime starting AB Starting AB
No regime After training After testing After training After testing McGonigle and Chalmers (1992)
s(A)s(B)s(C) 8 51 41 - - -
s(A)s(B)a(E) 12 68 26 - - -
s(A)a(E)a(D) 3 - 1 4 2
s(A)a(E)s(By 7 4 16 3 1 2
a(Eya(D)s(A) 9 - 1 57 50 -
a(E)a(D)a(C) 8 - - 59 47 1
a(E)s(A)a(D) 7 3 - 4 11 -
a(E)s(A)s(B) 2 1 13 - 3 -
Total correct 56 127 98 127 114 5
Total 288 144 144 144 144 7

*The distribution of solutions for two-tier agents is strongly determined by the order training pairs are presented. The analysis of the live
monkeys’ correlated stacks reported in the last column was performed by Harris and McGonigle (1994)

(Bryson & Leong, Animal
Cognition 2007)

Joanna J. Bryson and Jonathan C. S. Leong “Primate Errors in
Transitive ‘Inference’” Animal Cognition, 10(1):1-15, January 2007.



You don’t understand it
if you can’t build it.



Examples



google also “flocking starlings”

Flocking

HilariousGifsicom

http://researchinprogress.tumblr.com/



Boids

(Reynolds I987)
® Separation: avoid
crowding local % |
flockmates /A

® Alignment: steer N
towards the average ){_X A
heading of local Qh \>>
flockmates

® Cohesion: move toward v
the average position of b
local flockmates 4
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The Baldwin Effect: History

— ‘the effect through which an initially learned response
to environmental change evolves a genetic basis
— Late 1800’s intellectual context:
) Fossil record shows clear signs of rapid, directed evolution.
Y Natural selection is neither fast, nor directed.
) Lamarckism has been discredited by ‘Weissman barrier’.
— Baldwin (1896), Morgan (1896) and Osborn (1896)
proposed that learning might indirectly support rapid
and seemingly directed evolution.

— Controversial, important early application of Al
simulation (Hinton & Nowlan 1987; Maynard Smith
1987; Borenstein 2006; Paenke 2008).



The Baldwin Effect: How it Works

Information from individual learning cannot
pass into the genome directly.

However, it can have impact on the lifetime
fitness of an individual.

Hence, it can increase (or decrease) the
fitness difference between genotypes.

This will accelerate (or decelerate) the rate of
genetic change.



The Baldwin Effect Illustrated

Selects traits
affecting...

NATURAL PHENOTYPIC
SELECTION PLASTICITY

Changes fitness Learnt Fitness
landscape of...

Absolute fitness I learning l

Baseline Innate Fitness

Genotype Space 5/14



Evidence: Hinton & Nowlan’s (1987)
Simulation
— Hypothetical organism with 20 two-valued
traits, each associated with a gene.

— Fitness improved only if all 20 traits have the
advantageous value.

— The genes can have three alleles:

) Advantageous (represented as 1)
) Deleterious (represented as 0)
) Plastic (represented as ?)



Evidence: Hinton & Nowlan’s (1987)
Simulation

— Learning (within generation)
) 1,000 learning trials during reproductive lifespan.

> Each learning trial all plastic loci randomly replaced
with a trait equivalent to 1 (adaptive) or o (deleterious)
until / unless optimum genome found.
— The Organism

) Does not know which trait values are ‘advantageous’.

> Does know when it has found the ‘adaptive
phenotype’.

) Fitness payoff for learned phenotype proportionate to
amount of lifetime remaining after discovery.
— Reproduction: Sexual, Single-point crossover,
No mutation.
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Hinton & Nowlan: Results

Evolution over o0 generations
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Hinton & Nowlan: Results

— Learning accelerates evolution.
) Problem takes 1,000’s of generations to solve by
genetic evolution alone; would overshoot.
— Evolution selects against learning when
learning is costly (less reliable than a genetic
solution).

— Learning decelerates evolution when
learning is cheap (almost as reliable as a
genetic solution), maintains variation.

cf. Maynard Smith Nature 1987



