
Joanna J. Bryson
University of Bath, United Kingdom

Cognitive Architectures

Intelligent Control
and Cognitive Systems

brings you...

From Last Week

• Combinatorics is the problem, search is the only
solution.

• The task of intelligence is to focus search.

• Called bias (learning) or constraint (planning).

• Most `intelligent’ behavior has no or little real-
time search (non-cognitive) (c.f. Brooks IJCAI91).

• For artificial intelligence, most focus from design.

Architectures

• What kinds of parts does the system need?

• Ontology

• How should those parts be put together?

• Development methodology

• How exactly is the whole thing arranged?

• Architecture

“Architectures?”
• Like reactive planning, the term cognitive

architecture doesn’t quite mean what its
component words do.

• People have been looking for a generic plan
for building “real” (human-like) AI.

• This used to be a popular area of research,
now gets fewer publications.

• Nevertheless, evolutionary history tells us
something about what worked & didn’t.

What Worked

• The past does not
necessarily predict the
future, particularly in
AI.

• Changes in hardware
and other tech change
what is possible.

Cognitive Architecture

• Where do you put the cognition?

• Really: How do you bias / constrain /
focus cognition (learning, search) so it
works?

Basic Unit– Production

• From sensing to action (c.f. Skinner;
conditioning; Witkowski 2007.)

• These work -- basic component of
intelligence.

• The problem is choice (search).

• Require an arbitration mechanism.

Production-Based
Architectures

• Expert Systems: allow choice of
policies, e.g. recency, utility, random.

• SOAR: problem spaces (from GPS),
impasses, chunk learning.

• ACT-R: (Bayesian) utility, problem
spaces (reluctantly, from SOAR/GPS.)

*arbitration mechanisms

Expert Systems
• Idea: Encode the knowledge of a

domain expert as productions, replace
them with AI.

• Big hype in 1980s, do still exist e.g. for
checking circuit boards, credit / fraud
detection, device driver code.

• Problem: Experts don’t know why they
do what they do, tend to report novice
knowledge (last explicit rules learned.)

General Problem Solver

• GPS, written by Newell, Shaw & Simon
(1959, CMU), first program that separated
specific problem (coded as productions)
from reasoning system.

• Cool early AI, but suffered from both
combinatorial explosion and the Markov
assumption.

• Soar was Newell’s next try.

Soar• Productions
operate on a
predicate
database.

• If conflict,
declare
impasse, then
reason
(search
harder).

• Remember
resolution:
chunk

50

Contributing

Ideas

Soar

Version

Major

Results

Example

Systems

Implementation

MOUTBOT

QuakeBot

Goal

Dependency

Substate

Coherence
Decision Cycle Soar8 - 1999 SGIO

TacAir-Soar

RWA-Soar

Improved

Interfaces

TCL/Tk

Wrapper
Soar7 - 1996

Air-Soar

Instructo-Soar

High

Efficiency
Soar6 - 1992 C

Air-Soar

Hero-Soar

External

Tasks

Destructive

Operators
Single State Soar5 - 1989

ET-Soar

NL-Soar

External

Release
UTCSoar4 - 1986

General

Learning
R1-SoarChunking Soar3 - 1984

Universal

Subgoaling

R1-Soar

Dypar-Soar

OPS5

Lisp
Preferences Subgoals Soar2 - 1983

Symbol

Systems

Heuristic

Search

Production

Systems

Universal

Weak Method

XAPS 2

Lisp
Weak

Methods
Soar1 - 1982 Toy Tasks

Problem

Spaces

Soar• Soar has serious
engineering.

• “Evolution of
Soar” is a
favourite AI
paper (Laird &
Rosenbloom
1996) – admits
problems &
mistakes!

• Not enough
applications for
human-like AI

← One problem: main ap / funding
is war games for US military.

Architecture Lessons
(from CMU➣Michigan)

• An architecture needs:

• action from perception, and

• further structure to combat
combinatorics.

• Dealing with time is hard (Soar 5).

ACT-R

• Learns (& executes)
productions.

• For arbitration, relies
on (Bayesian
probabilistic) utility.

• Call utility “implicit
knowledge”.

ACT-R Research
Programme• Replicate lots of

Cognitive
Science results.

• See if the brain
does what you
think it needs to.

• Win Rumelhart
Prize (John
Anderson,
2000).

Retrieval Buffer
(VLPFC)

Goal Buffer
(DLPFC)

Manual Motor
(Motor)

Intentional Module
(not identified)

External World

Matching (Striatum)

Execution (Thalamus)

Selection (Pallidum)

P
ro

d
u

c
ti

o
n

s
(B

a
s
a
l
G

a
n

g
li
a
)

Declarative Module
(Temporal / Hippocampus)

Visual Buffer
(Parietal)

Visual Module
(Occipital/Parietal)

Manual Module
(Motor/Cerebellum)

Architecture Lessons
(from CMU Ψ)

• Architectures need productions and
problem spaces.

• Real-time is hard.

• Grounding in biology is good PR, may
be good science too.

• Being easy to use can be a win.

Spreading Activation
Networks

• “Maes
Nets” (Adaptive
Neural Arch.; Maes
1989, VUB)

• Activation spreads
from senses and
from goals through
net of actions.

• Highest activated
action acts.

Spreading Activation
Networks

• Sound good:

• easy

• brain-like (priming, action potential).

• Still influential (Franklin & Baars 2010,
Shanahan 2010).

• Can’t do full action selection:

• Don’t scale; don’t converge on
comsumatory acts (Tyrrell 1993).

Tyrrell’s Extended
Rosenblatt & Payton

Networks
• Consider all information & all possible

actions at all times.

• Favour consumatory actions by system
of weighting.

• Also weight uncertainty (e.g. of memory,
temporal discounting).

Tyrrell (1993)

Extended Rosenblatt and Payton Free-Flow Hierarchy
N NE E SE S SW W NW

UT
Reproduce

1.4

T U

Move Actions
Mate

-0.08

Court

P. Mate Rand. Dir P. Den R. Den All Dirs

Clean Leave
this Sq

CleanSleep

Mate Court

Approach
Mate

Explore For Mates

Explore

Sleep

Approach
P. Den

Approach
R. Den

Sleep
in Den Clean

Keep

DirtinessLow HealthNight Proxfrom Den
Distance

-0.10

-0.05

-0.01

-0.05 -0.05
-0.15

Courted
Mate in Sq

Mate in Sq
Receptive

No Den
in Sq

Den
in Sq

No Den
in Sq

in Sq
Den

-0.02

-0.02
-0.25

-0.30
-0.04

= small negative activation

= positive activation

= small positive activation

= zero activation

= large positive activation
(1.0)

• Compared all leading architectures.

• Discovered many weren’t practical.

• Hoped to be “fair” by having parameters
learned with a GA.

• Discovered this wasn’t tractable.

• Went into oceonagraphy after PhD.

Tyrrell’s Analysis

Subsumption
(Brooks 1986)
• Emphasis on

sensing to action
(via Augmented
FSM).

• Very complicated,
distributed
arbitration.

• No learning.

• Worked.

Architecture Lessons
(Subsumption)

• Action from perception can provide the
further structure – modules (behaviors).

• Modules also support iterative
development / continuous integration.

• Real time should be a core organising
principle – start in the real world.

• Good ideas can carry bad ideas a long
way (no learning, hard action selection).

Architecture Lesson?
• Goals ordering

needs to be flexible.

• Maybe spreading
activation is good for
this.

SA: Layers vs. Behaviours
• Relationship not

evident except in
development!

Layered or Hybrid
Architectures

1. Incorporate behaviors/modules (action
from sensing) as “smart” primitives.

2. Use hierarchical dynamic plans for
behavior sequencing.

3. (Allegedly) some have automated
planner to make plans for layer 2.

• Examples: Firby/RAPS/3T (‘97); PRS
(1992-2000); Hexmoore ‘95; Gat ‘91-98

Belief, Desires,
Intentions (BDI)• Beliefs:

Predicates

• Desires:
goals &
related
dynamic
plans

• Intentions:
current
goal

Procedural Reasoning
System• BDI

• And reactive
(responds to
emergencies
by changing
intentions.)

• Er... once or
twice
(Bryson
ATAL 2000).

Architecture Lessons

• Structured dynamic plans make it easier to
get your robot to do complicated stuff.

• Automated planning (or for Soar, chunking/
learning) is seldom actually used.

• To facilitate that automated planning,
modularity is often compromised.

(Bryson JETAI 2000)

Soar as a 3LA
J. Laird & P.
Rosenbloom,
“The
Evolution of
the Soar
Cognitive
Architecture”,
Mind Matters,
D. Steier and
T. Mitchell
eds., 1996.

Architecture Lessons
• Structured dynamic plans make it easier to

get your robot to do complicated stuff.

• Automated planning (or for Soar, chunking/
learning) is seldom actually used.

• Military turns chunking off because more
productions slow down the system.

• “Teaching by brain surgery” / programming,
not learning in real, installed systems.

CogAff

• Reflection on Top.

• Sense & Action
separated!

• (Davis & Sloman
1995)

• Reflection on Top.

• Sense & Action
separated!

• Hierarchy in AS;
Goal Swapping
(Alarms).

• (Sloman 2000)

CogAff

• Reflection on Top.

• Sense & Action
separated!

• Hierarchy in AS,
Goal Swapping
(now reactive).

• Current Web

CogAff

Separate Sense & Action
• Something we

higher mammals
do.

• Central Sulcus

Chance for Cognition?
(pictures from Carlson)

Architecture Lessons
(CogAff)

• Maybe you don’t really want productions as
your basic representation – you may want
to come between a sense and an act
sometimes.

• Your architecture looks very different if you
really worry about adult human linguistic /
literature-level behaviour rather than just
making something work.

Contemporary
Architectures?

• Currently people talk more about an
architecture for a system, not an
“architecture” meaning a generic
development methodology + ontology.

• But the topic may come back again.

• And the ontologies and histories are still
useful.

iCub architecture
(Vernon 2010)

Contemporary
Architectures?

• Currently people talk more about an
architecture for a system, not an
“architecture” meaning a generic
development methodology + ontology.

• But the topic may come back again.

• And the ontologies and histories are still
useful.

Summary

• Architectures assume an ontology of what
intelligence needs, and a development
methodology.

• Architectures describe how the necessary
parts should be connected.

• Cognitive architectures are often identified
with working code – action selection
systems.

