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From Last Week

• Combinatorics is the problem, search is the only 
solution.

• The task of intelligence is to focus search.

• Called bias (learning) or constraint (planning).

• Most `intelligent’ behavior has no or little real-
time search (non-cognitive) (c.f. Brooks IJCAI91).

• For artificial intelligence, most focus from design.



Architectures

• What kinds of parts does the system need?

• Ontology

• How should those parts be put together?

• Development methodology

• How exactly is the whole thing arranged?

• Architecture



“Architectures?”
• Like reactive planning, the term cognitive 

architecture doesn’t quite mean what its 
component words do.

• People have been looking for a generic plan 
for building “real” (human-like) AI.

• This used to be a popular area of research, 
now gets fewer publications.

• Nevertheless, evolutionary history tells us 
something about what worked & didn’t.



What Worked

• The past does not 
necessarily predict the 
future, particularly in 
AI.

• Changes in hardware 
and other tech change 
what is possible.



Cognitive Architecture

• Where do you put the cognition?

• Really:  How do you bias / constrain / 
focus cognition (learning, search) so it 
works?



Basic Unit– Production

• From sensing to action (c.f. Skinner; 
conditioning; Witkowski 2007.)

• These work -- basic component of 
intelligence.

• The problem is choice (search).

• Require an arbitration mechanism.



Production-Based 
Architectures

• Expert Systems: allow choice of 
policies, e.g. recency, utility, random. 

• SOAR: problem spaces (from GPS), 
impasses, chunk learning.

• ACT-R: (Bayesian) utility, problem 
spaces (reluctantly, from SOAR/GPS.)

*arbitration mechanisms



Expert Systems
• Idea: Encode the knowledge of a 

domain expert as productions, replace 
them with AI.

• Big hype in 1980s, do still exist e.g. for 
checking circuit boards, credit / fraud 
detection, device driver code.

• Problem: Experts don’t know why they 
do what they do, tend to report novice 
knowledge (last explicit rules learned.)



General Problem Solver

• GPS, written by Newell, Shaw & Simon 
(1959, CMU), first program that separated 
specific problem (coded as productions) 
from reasoning system.

• Cool early AI, but suffered from both 
combinatorial explosion and the Markov 
assumption.

• Soar was Newell’s next try.



Soar• Productions 
operate on a 
predicate 
database.

• If conflict, 
declare 
impasse, then 
reason 
(search 
harder).

• Remember 
resolution: 
chunk
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Soar• Soar has serious 
engineering.

• “Evolution of 
Soar”  is a 
favourite AI 
paper (Laird & 
Rosenbloom 
1996)  – admits 
problems & 
mistakes! 

• Not enough 
applications for 
human-like AI

← One problem: main ap / funding 
is war games for US military.



Architecture Lessons
(from CMU➣Michigan)

• An architecture needs:

• action from perception, and 

• further structure to combat 
combinatorics.

• Dealing with time is hard (Soar 5).



ACT-R

• Learns (& executes) 
productions.

• For arbitration, relies 
on (Bayesian 
probabilistic) utility.

• Call utility “implicit 
knowledge”.



ACT-R Research 
Programme• Replicate lots of 

Cognitive 
Science results. 

• See if the brain 
does what you 
think it needs to.

• Win Rumelhart  
Prize (John 
Anderson, 
2000).
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Architecture Lessons
(from CMU Ψ)

• Architectures need productions and 
problem spaces.

• Real-time is hard.

• Grounding in biology is good PR, may 
be good science too.

• Being easy to use can be a win.



Spreading Activation 
Networks 

• “Maes 
Nets” (Adaptive 
Neural Arch.; Maes 
1989, VUB) 

• Activation spreads 
from senses and 
from goals through 
net of actions.

• Highest activated 
action acts.



Spreading Activation 
Networks

• Sound good:

• easy

• brain-like (priming, action potential).

• Still influential (Franklin & Baars 2010, 
Shanahan 2010).

• Can’t do full action selection:

• Don’t scale; don’t converge on 
comsumatory acts (Tyrrell 1993).



Tyrrell’s Extended 
Rosenblatt & Payton 

Networks
• Consider all information & all possible 

actions at all times.

• Favour consumatory actions by system 
of weighting.

• Also weight uncertainty (e.g. of memory, 
temporal discounting).



Tyrrell (1993)

Extended Rosenblatt and Payton Free-Flow Hierarchy
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• Compared all leading architectures.

• Discovered many weren’t practical.

• Hoped to be “fair” by having parameters 
learned with a GA.

• Discovered this wasn’t tractable.

• Went into oceonagraphy after PhD.

Tyrrell’s Analysis





Subsumption 
(Brooks 1986)
• Emphasis on 

sensing to action 
(via Augmented 
FSM).

• Very complicated, 
distributed 
arbitration.

• No learning.

• Worked.



Architecture Lessons
(Subsumption)

• Action from perception can provide the 
further structure – modules (behaviors).

• Modules also support iterative 
development / continuous integration. 

• Real time should be a core organising 
principle – start in the real world.

• Good ideas can carry bad ideas a long 
way (no learning, hard action selection).



Architecture Lesson?
• Goals ordering 

needs to be flexible.

• Maybe spreading 
activation is good for 
this.



SA: Layers vs. Behaviours
• Relationship not 

evident except in 
development!



Layered or Hybrid 
Architectures

1. Incorporate behaviors/modules (action 
from sensing) as “smart” primitives.

2. Use hierarchical dynamic plans for 
behavior sequencing.

3. (Allegedly) some have automated 
planner to make plans for layer 2.

• Examples: Firby/RAPS/3T (‘97); PRS 
(1992-2000); Hexmoore ‘95; Gat ‘91-98



Belief, Desires, 
Intentions (BDI)• Beliefs: 

Predicates  

• Desires: 
goals & 
related 
dynamic 
plans

• Intentions:
current 
goal



Procedural Reasoning 
System• BDI

• And reactive 
(responds to 
emergencies 
by changing 
intentions.)

• Er... once or 
twice 
(Bryson 
ATAL 2000).



Architecture Lessons

• Structured dynamic plans make it easier to 
get your robot to do complicated stuff.

• Automated planning (or for Soar, chunking/
learning) is seldom actually used. 

• To facilitate that automated planning, 
modularity is often compromised.

(Bryson JETAI 2000)



Soar as a 3LA
J. Laird & P. 
Rosenbloom, 
“The 
Evolution of 
the Soar 
Cognitive 
Architecture”, 
Mind Matters, 
D. Steier and 
T. Mitchell 
eds., 1996.



Architecture Lessons
• Structured dynamic plans make it easier to 

get your robot to do complicated stuff.

• Automated planning (or for Soar, chunking/
learning) is seldom actually used. 

• Military turns chunking off because more 
productions slow down the system.

• “Teaching by brain surgery” / programming, 
not learning in real, installed systems.



CogAff

• Reflection on Top.

• Sense & Action 
separated!

• (Davis & Sloman 
1995)



• Reflection on Top.

• Sense & Action 
separated!

• Hierarchy in AS; 
Goal Swapping 
(Alarms).

• (Sloman 2000)

CogAff



• Reflection on Top.

• Sense & Action 
separated!

• Hierarchy in AS, 
Goal Swapping  
(now reactive).

• Current Web

CogAff



Separate Sense & Action
• Something we 

higher mammals 
do.

• Central Sulcus

Chance for Cognition?
(pictures from Carlson)



Architecture Lessons 
(CogAff)

• Maybe you don’t really want productions as 
your basic representation – you may want 
to come between a sense and an act 
sometimes.

• Your architecture looks very different if you 
really worry about adult human linguistic / 
literature-level behaviour rather than just 
making something work.



Contemporary 
Architectures?

• Currently people talk more about an 
architecture for a system, not an 
“architecture” meaning a generic 
development methodology + ontology.

• But the topic may come back again.

• And the ontologies and histories are still 
useful.



iCub architecture
(Vernon 2010)



Contemporary 
Architectures?

• Currently people talk more about an 
architecture for a system, not an 
“architecture” meaning a generic 
development methodology + ontology.

• But the topic may come back again.

• And the ontologies and histories are still 
useful.



Summary

• Architectures assume an ontology of what 
intelligence needs, and a development 
methodology.

• Architectures describe how the necessary 
parts should be connected.

• Cognitive architectures are often identified 
with working code – action selection 
systems.


