Intelligent Control and Cognitive Systems

Design and Learnability

Joanna J. Bryson University of Bath, United Kingdom

Learning

- Learning requires: state / accumulated accumulated evidence
 A means of acting on current evidence.
 - A means of incorporating feedback learning concerning the outcome of the algorithm action / guess from evidence.

The "No Free Lunch" Theorems

- No learning algorithm magically dismisses combinatorial complexity, but...
 - Wolpert, D.H., (1996) The lack of *a priori* distinctions between learning algorithms, *Neural Computation*, pp. 1341-1390.
- The representation is part of the bias ∴ some types of learning may converge faster or more reliably than others in a particular problem space.
 - Wolpert, D.H., (1996) The existence of *a priori* distinctions between learning algorithms, *Neural Computation*, pp. 1391-1420.

Evolvability

- One of the things that evolves is the capacity to evolve better.
- However, any bias makes some things easier to achieve and therefore others harder.
- Full-time theoretical biologists still find the "harder" part hard to comprehend.

Figure 1-64.-Proper position for sawing a board to size.

face grain

evolvability – "with the grain": adjustments phylogeny has often found helpful.

Speed of Evolution

- How likely is evolution to account for all the variety of nature?
 - Baldwin Effect history (mostly next lecture).
- If each cell is controlled by one gene: new features very unlikely.

subjects of future ICCS lectures Evolvability & EvoDevo

- The standard model of evolution taught in schools (and my earlier lecture) was developed in the 1950s to be clear.
 - Variation, transmission, selection.
- Study of epigenetic effects such as evolvability, niche construction, the Baldwin Effect, maternal effects, horizontal transmission (of information, including DNA): sometimes called Evolutionary Developmental Biology.

No Free Lunch

- NN: set of inputs, set of outputs, set of weights between them, set of experiences that produce error signals, nudge weights around to try to get inputs to determine right outputs.
- GA: set of inputs, set of outputs, body connecting them described by genes, flip & switch genes to try to get inputs to determine right outputs.

subjects of past ICCS lectures

No Free Lunch

- Besides the learning algorithm!
 NN: set of inputs, set of outputs, set of weights between them, set of experiences that produce error signals, nudge weights around to try to get inputs to determine right outputs.
- GA: set of inputs, set of outputs, body connecting them described by genes, flip & switch genes to try to get inputs to determine right outputs.

all stuff you have to design!

Trying to learn two types of things at once.

Two Kinds of Supervised Learning

Remember I said I wouldn't cover classification?

- Regression: also known as "curve fitting" or "function approximation". Learn a continuous input-output mapping from a limited number of examples (possibly noisy).
- Classification: outputs are discrete variables (category labels). Learn a decision boundary that separates one class from the other. Generally, a "confidence" is also desired (how sure are we that the input belongs to the chosen category).

l lied

Classification

- Typical machine-learning course: Lots of data, some hypothesised causes (gaussians),
 - want to know which cause accounts for which data so you can reason about it (or something).
- Cognitive Systems: Want to know which contexts best map to which actions.

Would like to learn the context categories and actions too!

Expectation Maximisation (EM) Algorithm

- Have data points & models of causes, but
- The models have parameters, and you aren't sure they're right.
- E step: adjust E figure out which data is probably accounted for by which cause.
- M: adjust model parameters to improve E. iterate!

Iterative Learning and Mapping

- Building a navigational map is a good demonstration of the problem of learning in general.
- Continuously update your belief about / model of the world given your perception and knowledge of your own action.

SLAM: Simultaneous Localization and Mapping: Part I

Chang Young Kim

These slides are based on: *Probabilistic Robotics*, S. Thrun, W. Burgard, D. Fox, MIT Press, 2005 and Zane Goodwin's Slide from the previous class

Many images are also taken from *Probabilistic Robotics*. http://www.probabilistic-robotics.com

Terminology

Robot State (including pose): $x_t = [x, y, \theta]$

Position and heading

 $X_{1:t} = \{x_1, ..., x_t\}$

⊠ Robot Controls: U_t

Robot motion and manipulation $\mathbf{W} \mathbf{u}_{1:t} = {\mathbf{u}_1, ..., \mathbf{u}_t}$

Sensor Measurements: Zt

Range scans, images, etc. $z_{1:t} = \{z_1, ..., z_t\}$

☑ Landmark or Map:

$$m_i$$
 or l_i

Landmarks or Map

$$m = \{m_1, \dots, m_n\} \text{ or } l = \{l_1, \dots, l_n\}$$

Terminology

Solution Model: $P(z_t | x_t)$ or $P(z_t | x_t, m)$ The probability of a measurement z_t given that the robot is at position x_t and map m.

Motion Model: $P(x_t | x_{t-1}, u_t)$

The posterior probability that action u_t carries the robot from x_{t-1} to x_t .

Terminology

Belief: $bel(X_t)$ Posterior probability

Ж

Conditioned on available data

$$\mathbb{B} Bel(x_t) = p(x_t \mid z_t, u_t)$$

Prediction: bel (X_t)
 Estimate before measurement data

$$\overline{Bel}(x_t) = p(x_t \mid z_{t-1}, u_t)$$

SLAM algorithm

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) = bel(x_t, m)$$

⊠Prediction

$$bel(x_t, m) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}, m) dx_{t-1}$$

WUpdate

$$bel(x_t, m) = \eta \ p(z_t \mid x_t, m) bel(x_t, m)$$

This is just Bayes' Theorem again. Kim used a notational abbreviation for the normalisation term. A Third Iterative Learning Algorithm

- Particle filters build a model of what you believe about an object that's changing.
 - Currently mostly used for object tracking in vision research.
- Use a GA-like algorithm to handle the fact that the probability distributions aren't normal / gaussians.

Particle Filters

Represent belief by random samples
Estimation of non-Gaussian, nonlinear processes

Sampling Importance Resampling (SIR) principle Draw the new generation of particles Assign an importance weight to each particle Resampling

Note: sort of a GA

Weighted samples

Particle Filter Algorithm

What good is a map?

- Need to know not only location, but actions.
- Mammals learn maps and actions with hippocampus, have different maps for different task contexts.

Problem Spaces

Hippocampal Learning

- Sparse representation.
- Useful for episodic memory data.
- Sparse representation indexes into concept memory (in neocortex) – model.
- Data used to update model e.g. in sleep, resting (like EM).

McClelland, McNaughton, O'Reilly 1995; Rogers & McClelland 2004; Foster & Wilson 2006.

Learning in Modular Systems

- OOD recommends modular decomposition along state / representation requirements.
- Modular approaches can facilitate learning as well as design.
- Hippocampus & Neocortex are one example of such decomposition in nature.

Simple Robot Sensor Fusion & Map Learning

(Bryson 1997, 2001)

- Nomad 2000
- Sonars, IR, Bumpers,
 Odometry

Joanna J. Bryson "The Behavior-Oriented Design of Modular Agent Intelligence", *Agent Technologies, Infrastructures, Tools, and Applications for e-Services*, R. Kowalszyk, J. P. Müller, H. Tianfield and R. Unland, eds., pp. 61–76, Springer, 2003.

Video (from NTSC)

3 Stages of **Development:** I. totally flexible obstacle avoidance, 2. limit the flexibility, to 3. allow

learning maps.

3 minutes, 1998

Bidan Huang, The Use of Modular Approaches For Robots to Learn Grasping and Manipulation, PhD 2015 System overview

1. Human demonstration

- ① Bottles and caps
- **(2)** Motion trackers
- **③** Dataglove mounted with tactile sensors
- (4) Force torque sensor

3. Robot control

Learning Multiple Module Control Model (1)

Adaptive Control for changing task context

Multiple controllers

Learning Multiple Module Control Model(2)

• How many modules?

Hierarchical clustering

• How to represent each module?

⊠Internal Model

Pair of Forward and Inverse Models

$$s_{t+1} = f(s_t, a_t)$$
 $a_t = g(s_{t+1}^*, s_t)$

 S_t : object status at time t

 a_{\star} : action applied on object at time t

 S_{t+1} : desired object status at time t+1

Robot Control

Experiment (1)

- Task:
 - opening bottle cap

- Human demonstrate in different task contexts
 - Different bottles
 - Different cap sizes

Experiment (3)

Learning Modules

- Clustering Control Strategies
- Encoding by GMM
 - Forward model

 $p\{s_t, s_{t-1}, a_{t-1} \mid \Omega_F\}$ **M**Responsibility factor

$$\begin{split} \eta_t &= \left\{ s_t, s_{t-1}, a_{t-1} \right\} \\ \lambda_t^k &= \frac{p(\eta_t | \Omega_F^k)}{\sum_{j=1}^J p(\eta_t | \Omega_F^j)} \end{split}$$

Inverse model

$$p\{s_{t}, st+1, a_{t}, a_{t-1} \mid \Omega_{I}\}$$

$$a_{t} = \sum_{k=1}^{K} \lambda_{t}^{k} a_{t}^{k} = \sum_{k=1}^{K} \lambda_{t}^{k} E\left(a_{t} \mid s_{t+1}^{*}, s_{t}, a_{t-1}, \Omega_{I}^{k}\right)$$

		Cap 1	Cap 2	Cap 3	Cap 4
	Phase I			(b1c3) Cluster 3	
Bottle 1	Phase II			Cluster 3	
	Phase I			(b2c3) Cluster 2	
Bottle 2	Phase II			Cluster 3	
	Phase I	(b3c1) Cluster 2	(b3c2) Cluster 2	(b3c3) Cluster 2	(b3c4) Cluster 2
Bottle 3	Phase II	Cluster 3	Cluster 3	Cluster 3	Cluster 3
	Phase I			(b4c3) Cluster 1	
Bootle 4	Phase II			Cluster 2	

https://www.youtube.com/watch? feature=player_embedded&v=geqip_0Vjec

https://www.grasp.upenn.edu/

Very Fast SLAM!

Simple Solutions: The Polly Algorithms

 First autonomous robot to use vision to navigate at animal-like speeds (1 m/sec).

Ground plane assumption /
 Specialised 3-way navigation choice.
 Perception

Map following via odometry
 × low-resolution landmarks.
 Hand-coded
 Map & Task (Horswill 1993)

- Very low res frames give fast processing.
- Ground Frame Assumption: What is in front of you is the ground, what looks like it is too.
- Go one of three ways. Works at 60Hz.

Polly Navigation

Figure 2.5: Polly's habitat, the 7th floor of the MIT AI laboratory. The diagram is not to scale, and the direction north has been defined for convenience, rather than geological accuracy.

- Hand-coded rough map of 7th floor of AI Lab
- A few landmarks recognised by 5x7 pixel images give certain location.
- Otherwise approximate using odometry.

Cerebus

2001 Nils Nilsson Award for Integration of AI Technologies IJCAI 2001, Seattle

- I have the video in NTSC, I've asked for either digital or permission for Bath to convert it.
- In the mean time, a bit less exciting: Cerebus winning a prize at IJCAI 2001.

Summary

- Learning has a significant role in cognition, and is largely what advances AI right now.
 - Due to algorithm, systems engineering and hardware advances.
- Learning never happens in a vacuum.
 - Even provably-equivalent systems will learn different things. Path dependency is part of bias / priors making it tractable.