Understanding
Natural
Intelligence
Natural intelligence (NI) is the opposite of artificial
intelligence: it is all the systems of control present in biology.
Normally when we think of NI we think about how animal or
human brains function, but there is more to natural intelligence
than neuroscience. Nature also demonstrates non-neural
control in plants and protozoa, as well as distributed
intelligence in colony species like ants, hyenas and humans.
Our behaviour co-evolves with the rest of our bodies, and in
response to our changing environment. Understanding natural
intelligence requires understanding all of these influences on
behaviour and their interactions.
One of the best
methods for understanding how NI systems work is to try to
replicate their behaviour in simulation. Just as learning
to paint forces you to understand the details of what you are
seeing, building a working model forces you to understand the
intricacies of what the target intelligent system is
doing. For example:
- What environment does it work in?
- What aspects of that environment does it rely on?
- What does it need to do itself?
- How much does it need to learn and remember?
- What can it learn just from its senses?
- How much does it need to innovate?
An AI model of an
organism is a very-well-specified hypothesis about how that
organism thinks and behaves. Like any hypothesis, we assess
an AI model by testing its predictions against the performance of
the real system and by evaluating the plausibility of its
assumptions. The predictions of a model are its behaviour, which
we simply record after running simulations. Its assumptions
are its components; for example, the computations it makes, the
information it has access to, the things it perceives and
remembers. We can use standard statistical tests to see how
close we come to modelling behaviour in order to argue the
validity of our assumptions.
The Artificial
models of natural Intelligence (AmonI) group at Bath is
dedicated to understanding natural intelligence. Building AI
models of NI systems requires designing
intelligent systems.
Below are selected publications of mine contributing to
understanding NI. For full
references and a complete list of publications, see my publications page. My main current
research is on identity,
social structure and public goods investment, which that
page just linked goes into detail. For focused lists
concerning task
learning, the evolution
of
primate social structure and the evolution
of
culture, see my understanding
primate
intelligence web page. For a general overview of my
views on natural intelligence and how it relates to artificial
intelligence, see this book chapter:
Papers primarily
concerning NI:
Joanna Bryson
Last updated 15 June 2019.